1 Cellular basis of learning

Synaptic weights are not fixed but changed by neuronal activity. This "plasticity” is thought to be the

ecture

basis of learning and memory.
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Long-term potentiation and long-term depression reflect activity long ago (from 10 min to a

lifetime).
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Short-term depression and short-term potentiation reflect recent activity (last few 100 ms).
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Early LTP increases the probability of release at existing sites, late LTP adds additional sites.
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The hippocampal formation is needed to implant declarative memories (things that you know that

you know).

(A) Brain areas associated with declarative memory disorders
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(B) Ventral view of hippocampus and related structures with
part of temporal lobes removed
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In Patient H.M., the hippocampal formation on both sides was removed surgically (to treat epilepsia).
H.M. woke up with severe amnesia. While he remembered his earlier life, he was unable to recall sub-
sequent events in daily life. His perception, abstract thinking, or reasoning was unaffected. Similarly,
he could learn new skills such as mirror writing or puzzle solving. As soon as his attention turns to

something new, all memory of recent activities is lost.

2 Brain circuits of learning

Learning occurs all over the brain, especially in association cortices.
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3 Formalizing learning

3.1 Unsupervised learning

The network responds to training stimuli according to its internal connectivity and dynamics.

Primary visual
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Primary somatic sensory
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learning constitutes self-organisation in the face of the stimulation imposed.
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3.2 Supervised learning

Input activity is imposed by a stimulus and output activity by a "teacher” network. Feed-forward
connections between parietal and premotor cortex are an example (Lecture 2).

Desired output pattern from “teacher” network Area 4
Area 6
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4 Hebbian and non-Hebbian plasticity

4.1 Donald Hebb

Working at the Yerkes Primate Lab in Florida, Donald O Hebb published his ground-breaking book " The
Organization of Behaviour: A Neuropsychological Theory” in 1949. Combining data about brain and
behaviour into a single theory, he proposed fundamental principles for the interaction between neuronal
activity and synaptic plasticity, which became known as Hebbian learning:

When an azon of cell A is near enough to excite cell B and repeatedly or persistently takes part
in firing it, some growth process or metabolic change takes place in one or both cells such that A’s
efficiency, as one of the cells firing B, is increased

The modern paraphrase goes
Neurons that fire together wire together

Increases in synaptic strength must be compensated by decreases elsewhere. Thus, failure of A to trigger
B should weaken the connection. In both cases, Hebbian plasticity compares pre- and post-synaptic firing,.
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3.3 Reinforcement learning
A reinforcement signal (reward if positive, punishment if negative) is propagated by a "teacher” unit

within the network. Dopamine neurons in the ventral tegmental area may constitute such a ”teacher”
unit.

Reward/punishment
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4.2 Non-Hebbian plasticity

In neuronal adaptation, activity modifies excitability and response properties of neurons. In non — Hebbian,
pre- or post-synaptic activity alone modifies synaptic weights (e.g., STD, STP).

To avoid uncontrolled growth of synaptic strength, we need to assume constraints on the individual or
collective weight of synapses:

Synaptic saturation Synaptic competition
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5 Synaptic plasticity rules

Consider a single postsynaptic neuron driven by N, presynaptic inputs with activities us for b =
1,2,...,N;. We use a linear version of the firing rate model, with w, representing the synaptic weight of
the connection from presynaptic neuron b, which can be positive (excitation) or negative (inhibition).

N
dv -
T,.a ;:.—v+bz_l: wyu, =—-v+w-u
We now need to specify how the w;, change as a joint function of presynaptic activity u; and postsynaptic
activity v. Unfortunately, this produces a coupled system of differential equations.

dw
Tw at = f(v,u)

v(®)

w(t)

5.1 Basic and averaged Hebb rule

The simplest implementation of Hebb's rule is

Tu-gdltv:v“ ‘rw‘%vt-'::uub b=1,2,...,Np

To avoid overly rapid changes in w, we can average over a set of input patterns (denoted by ()).

dw dw
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To simplify the situation, we focus on the dynamics of synaptic weights and assume that neuronal activity
has time to reach equilibrium:

N
v= E WUy, =W-1
b=1

dw
vy = f(v,u)

w(t)

We already know that Hebb’s rule is not stable and that synaptic weights grow beyond all bounds. To
demonstrate this formally, consider

[w|2=w-w=Zw§
b

'rw—=27'ww-(fll:=2w-uu=2w-uv=2v2 >0
A discrete version of the basic Hebb rule is
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5.2 Covariance rule

The Hebb rule can be modified to ensure that synaptic strength may both increase and decrease, depend-
ing on pre- and postsynaptic activity. Specifically, we need to make sure that synaptic strength decreases
when high presynaptic activity is associated with low postsynaptic activity. This can be achieved either
by a postsynaptic threshold 6, or by a presynaptic threshold vector 6,,:

dw

Ty o (v—=0,)u 0, = (v)
dw

rwﬁ—v(u—o,,) 0, = (u)

The thresholds determine the level of activity above which LTD turns into LTP. A convenient choice of
threshold is the average value of the corresponding variable. Both choices produce the same average rule,
where C is the covariance matrix of the input:

dw

Tw g ={(w-u—{(u))u)=(w-uu)—(w-u){u)=C.w C = (uu) — (u)?
re ™ = (wou(u- ) = (wouw) - (wou) () = C-w

5.3 BCM rule

Bienenstock, Cooper, and Munro (1982) suggested an alternative rule ("BCM rule”) that changes synaptic
weights depending on current pre- and postsynaptic activity, consistent with biological evidence. In
contrast to the covariance rule, the BCM rule uses a sliding threshold which adapts to the current output
activity:

d

Tw u =vu(v-40,) T % =02 -0,
dt

The threshold #, must grow more rapidly than » with increasing output activity becomes large. This

implements synaptic competition, because raising a gobal threshold weakens all synapses other than the

strongest one.

Although now synaptic weights both increase and decrease, they remain unstable due to positive feedback.
For both rules, the time derivative of the sum of all squared weights becomes
djw|?
dt

djwl?

=2v (v—(v)) = (T

y=2((v®) - (©)?) >0 if v const

5.4 Synaptic normalization

Instead of introducing synaptic normalization indirectly via the BCM rule, it is also possible to introduce
an explicit constraint, for example on the total sum of synaptic weights (if they are all positive) or on
the total sum of squared weights. The constraint can either be imposed rigidly (forcing each neuron to
satisfy the constraint on every time step) or dynamically (requiring it to be satisfied only asymptotically).
Such weight normalizations can drastically alter the outcome of a training procedure. Two examples of
synaptic normalizations are the "subtractive normalization” and the "Qja rule”:

dw v(n-u)n ] e
Tw €x* vu— — N subtractive normalization
u
dn - w n-n
T'"—dt =vn-ull- N =0
u

This rule has to be used with saturation constraints, to prevent weights from becoming negative (floor) or
all weights but one from becoming zero (ceiling). This procedure is highly competitive, as small weights
are reduced disproportionately.
d
Tw d—:v =vu—av’w Oja rule
dw|* _

o g 20% (1 -alw|?)

This rule uses only local information (pre- and post-synaptic activities and local synaptic weight) but is
not supported by direct evidence. The value of |w|? will relax over time to a value 1/a, preventing the
weights from growing without bound and thereby introducing competition between weights.



5.5 Spike-time dependence

Biological experiments demonstrate the critical importance of the relative timing of pre- and post-synaptic
action potentials in synaptic changes. If pre- and postsynaptic spices are paired repeatedly, the synaptic
strength changes only when both fall in a window of +£50ms. Presynaptic spikes preceding postsynaptic
ones produce LTP, the reverse order produces LTD. The maximal change occurs when the time difference
is only a few milliseconds.

A) Paired stimulation in cortical slice. Amplitude of postsynaptic EPSP, as percentage of unpaired
stimulation control. 50 to 75 pairings produce LTP/LTD of some 20%.

B) Paired stimulation in Xenopus tadpole retinotectal synapse. Percent LTP/LTD from multiple pairs
of action potentials as a function of relative spike timing.
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And the solution is:
N.

w(t) =Y w0)-e) exp (1) e,

u=1

As all eigenvalues A, are positive, all of the exponential factors grow, albeit not equally rapidly. If
the largest eigenvalue g = 1 is unique and the initial weights not unfavourable (w(0) - e; # 0), the
corresponding eigenvector dominates the development so that the response of the trained system to an
arbitrary input vector is approximately

voxe;-u w(oo) x e;

In short, the weights will reflect
the principal eigenvector of the

input covariance. Thus, what input
Hebbian synapses do learn error u
(without supervision) are input d=u-ve;

correlations. After learning, the
output of the trained network is

the dot product of input vector /
and weight vector (projection of P P
input onto eigenvector). « <
Principal output
eigenvector ve;=(ei-u)e;

6 Linear analysis of single post-synaptic neuron

If we ignore all constraints, we can analyse the basic Hebb rule with standard techniques for solving
differential equations. In particular, we can obtain an explicit solution for w(t) in terms of the eigenvectors
of the covariance matrix Q of the input. As covariance matrices are symmetric, all eigenvalues A, are
real and non-negative.

dw
dt

Tw =vu=Q'w where Q = (uu)

Q-eu=Me, r=12,...,N, M2X>...22n 20
Using the eigenvectors as a basis, we can write the N, dimensional vector w(t) as

Ny

wit)= Y cult)e,

=1

Substituting this expansion, we can solve the differential equation

N de, (t) L \-
Y “ale=Y at)Q-e= cult) e
=1 u=1 p=1
= Tw dc;t( A cu(t) A - cu(t) = cu(0) exp ()“"Lt)

6.1 Hebbian rule with weight normalization

What about the exponential growth of weights w? We can normalize weights without loosing learning
abilities, that is, the ability to extract covariances in the input. Consider a Hebbian rule with presynaptic
threshold and weight normalization:

— e ™ = vy e~ {u) <u>=}$uf w| = v w =1
A discrete version of this rule is
Wt+x=\/x§; x =w; + ev; (u, — (u)) e:f—:
w(t) uncorrelated input w(t) correlated input

/\1‘2'3 = 1.0706  1.0631  1.0332 ,\"2‘3 = 6.7563  1.0347  0.7292



6.2 Principal component projection
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Correlation rule Covariance rule
r=w-u r,rdd—‘:’:Q-u.Q:(uu) 1",,,?1—:.’=C-u.C=(uu)—(u)2
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7 Biological examples of unsupervised learning

7.1 Simple cell receptive fields

Hebbian learning can explain the orientation selectivity of neurons in visual area V1. Orientation selec-
tivity requires a receptive fields with alternating stripes of ON and OFF inputs. Such an arrangement of
ON or OFF regions can arise from an initially uniform input distribution by correlation-based plasticity
of feed-forward synapses.
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Miller (1994) Development of simple cell receptive fields

Consider a situation where two initially equivalent input projections (ON- and OFF-center LGN) compete
to control a single output layer (V1 simple cells). The early development of a difference between the two
projections can be studied by linear models.

S§9N(z,a) SOFF(z ) connection matrices
CONON(a — 3) COFFOFE (o _ 3) CONOFF (o — g) input correlations
A(z-a) fixed arbor function
I(x—y) fixed intracortical connection

B
t:cm'-“ a-p)—]|
CON-OFF (g8 ) —+i

Receptive fields and orientation tuning.

A =020 ' B 028

ll??? D9~1 02 02 010 0194 018 0n11s 011
(116 014 n13 012 on 013 012 Ull Ull) UU‘!
nog 006 0om o003 008 006 0om 0021 0003
& e l“ L2
m Ry iviej®
2 "&022|2 0.20 018 5. 19 2 "m 12‘.}014
l\ ¥l
Mﬂ L il HM. Hmi II‘] M J
PR 0.14,,, 013, 012, . 0.11 0.12, . 0.11 010
1
mwmm M, hmmmmmm
008 006 0003 0.08 0.06 0.04 0.021

il i i i, 1 i

Differential covariance within and between input projections.
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7.2 Ocular dominance and orientation selectivity

Unsupervised Hebbian learning helps us understand the development of neuronal selectivity and the
formation of cortical maps. In many cases, neural selectivities are arranged across the cortical surface in
an orderly fashion known as a "cortical map”.

Cortical maps are established during development by both activity-independent and activity-dependent
mechanisms. The standard view is that the initial targeting of axons is independent of activity, and
simply determines the proper layer to innervate and establishes a coarse order of projections. Activity-
dependent mechanisms then refine this initial order and create and preserve the mature selectivities and
cortical maps.

The best known examples are ocular dominance stripes and orientation columns in primary visual cortex,
but the same principle abplies manv other sensorv cortical areas.
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Development of OD bands in kittens

Consider a multi-unit input level mapping onto a multi-output level. Different output neurons must
come to represent different aspects of the input. Recurrent inhibition in the output network can ensure
that output units develop different selectivities. For example, a ”"Mexican hat” connectivity ensures (i)
that neighboring units have similar selectivities and (ii) and that more distant neurons have different
seletivities.
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Segregation patterns revealed by intrinsic signal imaging
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Erwin & Miller (1998) Orientation and ocular dominance maps
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To ensure that each output neuron represents one particular input correlation (RN, RF, LN, LF), we
impose a competitive constraint and require that the sum of all synaptic weights onto each output neuron
be constant.

Z SEC(#,d,t) = const
ECa
The results of the Hebbian learning are discussed in terms of differential weight functions S and differential
correlation functions C:
SSUM (& #) and CSYM(d, §): all cell types
S90(&, &) and COP(&, §): right-eye minus left-eye
SORI+ (&, 7) and CORI*(&, ff): on-center minus off-center

SORI=(&, %) and CORI-(g, 3) right-eye on/off difference minus left-eye on-off difference

Table 1. Definitions of the composite variables

Composite weight variables §* Composite correlation functions C*
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Segregation patterns revealed by intrinsic signal imaging 78 ‘Conelusion

Ocular dominance requires:
Same eye inputs more strongly correlated than opposite eye inputs, especially at small separations. Must
be true for aggregate input from both center types (ON and OFF).

Orientation-selectivity requires:

Same center input more strongly correlated than opposite center input, at small separations (within arbor
radius), and correlated less strongly at large separations. Must be true for aggregate input from both
eyes (right and left).

These requirements are met by a wide class of correlation functions. The development of orientation and
ocular dominance maps is best achieved sequentially.

The biological development may also be sequential: visual responses in the retina will exhibit ON-OFF
correlations even before the two eyes move in a coordinated fashion. LEFT-RIGHT correlations will arise
only after the eyes move together.
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