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Excitatory-Inhibitory Network

starting from the equation from the output rate

Tr?j—\tI:—V—i—F(h—i—M-V) (1)

Dale’s law: neuron have either excitatory or inhibitory effects on all of their postsynaptic
targets

Mag strength of synapses from a’ to a

e neuron a’ excitatory — May > 0 Va

e neuron @’ inhibitory — M,y < 0 Va

describe these neurons separately

dVE

TEW = —VE+FE(hE—|—MEE'VE+MEIVI)
dV|
TIE = —V| —|—F|(h| +M|E'VE+MIIV|)

note, that a symmetric M violates Dale’s law

Illustration of the dynamics — a simple model

all excitatory neurons are described by a single firing rate vg, and all inhibitory neurons by
another single firing rate v,

F(-) threshold linear function
=

dv
TEd—tE = —Vg + [Mgg - VE + Mg|Vi — VE|+

dv
Tld—tlz—Vl-l-[MlE-VE-l-MuVI—V|]+ (2)
We set Mgg = 1.25, Mig =1, M}; =0, Mg = -1, yg = —10Hz, vy =10 Hz , Tg = 10 ms;
and we vary T,



dynamical behavior — fixed points
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Activity of the excitatorv-inhibitory firing-rate model when the fixed
point is stable. A) The excitatory and inhibitory firing rates settle to the fixed poine
over time. B) The phase-plane trajectory is a counter-clockwise spiral collapsing to
the fixed point. The open circle marks the initdal values vp(0) and v1(0). For this
example, 1 = 30 ms.
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Nullclines, flow directions, and fixed points



stability Analysis
fixed point is

e stable — initial values of vg and v; near this point will be drawn toward it over time

e unstable — nearby configurations are pushed away from the fixed point

stability of the fixed point is determined by the real parts of the eigenvalues of the matrix

((MEE—l)/TE Mg /TE )
Mie/T| Mn=-0)/vy )°

eigenvalues are
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real and imaginary part of the eigenvalue determining the stability of the fixed point
= fixed point is stable for 1, < 40 ms and unstable for larger values of T,
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Activity of the excitatorv-inhibitory firing-rate model when the fixed
point is unstable. A} The excitatory and inhibitory firing rates settle into periodic
oscillations. B) The phase-plane trajectory is a counter-clockwise spiral that joins
the limit cvele, which is the closed orbit. The open circle marks the initial values
v (0} and vi(0). For this example, 1y = 50 ms

bifurcation: transition from a stable fixed points to a limit cycle
Exercisel

Write a matlab program to analyze the dynamical behavior of the system of differential
equations (2). Plot also a phase-plane trajectory.



Stochastic Networks

consider the total input current of unit a with symmetric M (and see Eq. (1))

Ny
la(t) = ha(t) + Z MaaVa (1) 3

a=1

Boltzmann machine: (stochastic neurons):
If single unit a is selected, then update is done as follows:
Va IS set to 1 with probability:
1

P[Va(t —|—At) — 1] — F(|a(t)), with F(la) = 1+9Xp(—2[3|a) 4)

and to 0 otherwise; B =1/T with "temperature” T.
Using update rule (4) v does not converge to a fixed point, but can be described by a
probability distribution

P[v] Oexp(—BE(v)), E(v)=-h-v— %V-M -V (5)

associated with an energy function E(v).
Note: T =0 in Eqg. (4) = F(-) is threshold linear function and v evolves according to

Eq. (2).

statistical physics — Ising model

The idea of Eq. (4) can be derived with methods of statistical physics.

Gibbs sampling — canonical ensemble:
system with energy E (s) in a heat reservoir with temperature T is in the thermodynamical
equilibrium in state s with probability (Boltzmann distribution)

o(g = 2OLPEG) ©

with partition function Z = z exp[—BE(s)] and B =1/(KT).
S
System with two states:

example: single Ising spin in a magnetic field h:
s==+1,E(s)=—sh

= P(s = £1) (7)

1
~ 1+exp(F2ph)
Hopfield model:
set ha(t) =0 in Eq. (3) = Hopfield model (with stochastic neurons)
if T =0 we have the deterministic Hopfield model (N recurrent neurons with threshold

linear function
N
Z Miij
=1

Sij =sgn , Sj=+1 (8)




Ising model
physical analogy to the Hopfield model

1
H :_EZMijSiSJ 9)
i

with §; = +1

H (Hamiltonian) is an energy function for the Hopfield model, meaning that, if H — H’
according to the dynamic of the Hopfield model, than H < H

Exercise 2: Show that for the deterministic Hopfield model (with M;; > 0)

Ising model with

e T = 0: equivalent to deterministic Hopfield model

e T > 0: equivalent to Hopfield model with stochastic neurons

mean field approximation

is an general approximation in statistical physics
example: Ising model

for Hopfield model with stochastic neurons follows in mean field approximation

(Si) = tanh (B Mij (S;)) (10)
J

Exercise 3: Do the mean field approximation for various temperatures using matlab for

0 05 03
Mij=1| 05 0 04 |.
03 04 0



