Cognitive Neuroscience II Lecture 4

Prof. Dr. Andreas Wendemuth

Lehrstuhl Kognitive Systeme
Institut für Elektronik, Signalverarbeitung und
Kommunikationstechnik

Fakultät für Elektrotechnik und Informationstechnik Otto-von-Guericke Universität Magdeburg

http://iesk.et.uni-magdeburg.de/ko/

Resumé of previous lecture 3

- A simple autoassociative network with 2 neurons was considered,
 partially connected = 3 of 4 weights
- Depending on the values of the weights, this network can have 1 or 5 fixed points where the dynamics comes to a halt. I.e. at these points, the firing rates \mathbf{v} are constant.
- v The fixed point $\mathbf{v}=(0,0)$ (no firing) is stable.
- There are other fixed points $\mathbf{v} \neq (0,0)$ which are unstable, i.e. we have seen that small deviations from this point will not vanish in time, but add up to large amounts.
- v The behaviour can be simulated in discrete steps. The role of Δt and τ must be discussed.

4. Hard delimiters

- v We now look at feedforward networks
- We are interested in the *information* processing abilities of such networks, rather
 than in the individual neuron's performance
- Hence, we simplify the firing rate equation further, using hard delimiters. (or threshold activation functions)

Hard delimiters

- v Instead of using tanh, one can use a similar but hard delimiter: sign.
- v Note that $\tanh(\gamma x) \xrightarrow{\gamma \to \infty} sign(x)$ and

$$\tau \frac{d\mathbf{v}}{dt} = -\mathbf{v} + \tanh(\gamma^{-1}\mathbf{M}^*\gamma\mathbf{v}) \cong -\mathbf{v} + \operatorname{sign}(\gamma^{-1}\mathbf{M}^*\mathbf{v}) \quad \text{or}$$

$$\frac{\tau}{\Delta t}(\mathbf{v}^{t+1} - \mathbf{v}^t) = -\mathbf{v}^t + \mathbf{sign}(\gamma^{-1}\mathbf{M}^*\mathbf{v}^t) \quad \text{if} \quad Ord(\gamma^{-1}\mathbf{M}) = 1$$

"Hard" feedforward networks

- v Write $\gamma^{-1}\mathbf{M} = \mathbf{W}$ and choose $\Delta t = \tau$
- v Then for feedforward networks with input \mathbf{u} , output \mathbf{v} : $\mathbf{v}^{t+1} = \mathbf{sign}(\mathbf{W} * \mathbf{u}^t)$
- v Regard 1 time step as 1 forward processing:v = sign(W*u)
- v Note that due to sign, (u,v) can only attain values ± 1 .

An information processing question

- v Let different sets μ of inputs to a neuron be given as \mathbf{u}^{μ} , and corresponding outputs \mathbf{v}^{μ} .
- ν How many (p) different sets of these inputoutput-relations can be realized with the same set of weights W? I.e. is the neuron able to handle p ,,tasks" correctly?
- v If dim(**u**)=N, α =p/N is called the ,,information capacity" or simply, *capacity*.
- v This already supposes that p scales $p \propto N$.

Capacities

v In a <u>single</u> feedforward neuron, this asks to simultaneously satisfy the p equations

$$v^{\mu} = sign(\mathbf{w} * \mathbf{u}^{\mu})$$

- v Since (u,v) =±1, this is equivalent to 1=sign(w* v^{μ} u^{μ})
- υ Defining a vector $v^{\mu}\mathbf{u}^{\mu} = \mathbf{x}^{\mu}$ (x=±1) we have 1=sign($\mathbf{w} * \mathbf{x}^{\mu}$) or $\mathbf{w} * \mathbf{x}^{\mu} > 0$; $\mu = 1...p$

Refresh: Binomials

v The number of ways of arranging k items within N, without regarding the order, is

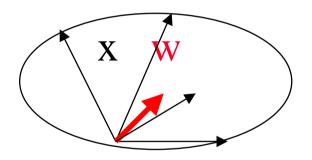
$$\binom{N}{k} = \frac{N!}{k!(N-k)!} = \frac{N(N-1)...(N-k+1)}{(N-k)(N-k-1)...1}$$

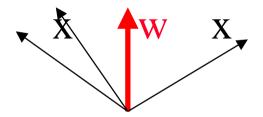
υ Example: 3 students out of 5 can be selected in 10 ways.

$$0!=1$$
 $\binom{0}{0}=1$

Geometric interpretation 1: Wrapping flower bouquets

υ Not just for ladies





N-dimensional cones

- v With N-dimensional \mathbf{x} , \mathbf{w} is the centre of an N-dimensional *cone* which wraps the flowers \mathbf{x}^{μ} .
- v The p conditions $\mathbf{w}^*\mathbf{x}^{\mu} > 0$ are the wrapping conditions: as long as they are satisfied for one w, the bouquet is ,,wrappable".
- υ The capacity is the amount of flowers wrappable per dimension.

Example: flower wrapping

- ν Since x=±1, we have in general 2^N flowers.
- ν In N=2 dimensions, we have 4 possible flowers.
- v p=3 of these 4 are (at most) wrappable (almost).
- υ We now take all $S = \binom{2^N}{p}$ selections of p flowers.
- v The *capacity* is reached if for half of these S many, the bouquet is wrappable (probabilistic definition).
- v For N=2, p=3, all S= $\binom{4}{3}$ = 4 selections are wrappable.
- v For N=2, p=4, the S=1 selection is not wrappable
- ν Hence, for N=2, we have $\alpha=p/N=3/2=1.5$

Limitations

- ν All $S = \binom{2^N}{p}$ selections of p flowers have to be considered for the flower wrapping equations.
- v Since $p = \alpha N$,

$$S = \begin{pmatrix} 2^{N} \\ \alpha N \end{pmatrix} = \frac{(2^{N})(2^{N} - 1)...(2^{N} - \alpha N)}{(\alpha N)!} \xrightarrow{\text{N large}} \frac{2^{(\alpha N^{2})}}{(\alpha N)!} \propto 2^{(\alpha N^{2})}$$

v This becomes prohibitively large even for moderate N. So a different approach is needed.

Ex4: Capacities in 3,N dimensions

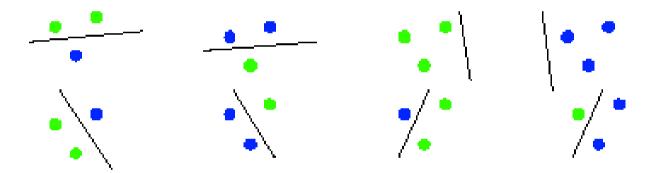
- v What is the wrapping capacity for N=3?
- υ [Ladies only: for N=3, is that what you always/normally/sometimes/never get? If there is a difference: why?]
- υ Do you have an idea/educated guess what the capacity would be for large N?

Geometric Interpretation 2: Arranging Sets in Dichotomies

- v Regard again the p eqns. $v^{\mu} = sign(\mathbf{w} * \mathbf{u}^{\mu})$
- v For any given set of p inputs, there are 2^p ways of assigning the outputs. One such way is called a dichotomy.
- v Of these, C dichotomies can be realized by the neuron by arranging w. These dichotomies are *linear separations* of the 2 classes of data. w*x=0 defines a *linear separating hyperplane*.
- v The capacity is reached at $C = \frac{1}{2} 2^p$, i.e. half of all assignments can be processed by the neuron / can be linearly separated.

Dichotomies für p=3, N=2:

 $v = 2^p$ Dichotomies with linear separating hyperplanes:



General position

- v p vectors in N dimensions are said to be in ,,general position" if no subset of M \leq N vectors are linearly dependent.
- v Example 1: in N=3 dimensions, a subset M=3 of p vectors are situated on 1 line. Then the p vectors are not in general position.
- υ Example 2: in N=9 dimensions, a subset M=7 of p vectors are situated in a 4d-subspace.
 Then the p vectors are not in general position.

$C(p,N) = 2^p (\alpha \ge 1)$ for $p \le N$.

- v If $p \le N$, and we can always use the flower bouquet inequalities $\mathbf{w} * \mathbf{x}^{\mu} > 0$ and demand an even tighter condition, $\mathbf{w} * \mathbf{x}^{\mu} = 1$
- v We then have $p(\leq N)$ linear equations in N variables w which, if the patterns are in general position, can always be solved.
- v This works for all assignments of outputs, so $C(p,N) = 2^p$ for $p \le N$, hence $\alpha \ge 1$.

Counting Theorem (Cover 1965)

- v Compute the number of available dichotomies C(p,N) recursively (Thomas Cover, 1965):
- v p patterns in N dimensions are assigned to C(p,N) many dichotomies. *Now add one more pattern*. Without changing anything in the C different weight vectors \mathbf{w} , the new pattern will be assigned according to $v^{\mu} = sign(\mathbf{w} * \mathbf{u}^{\mu})$.
- v This yields the same number of dichotomies $C(p+1,N)_1 = C(p,N)$

Counting (Ctd.)

- v If one wants to have the other assignment for the new pattern, with all previous assignments fixed, it is necessary to modify w.
- v For doing so, one needs one degree of freedom. This is given if the assignment of the previous p patterns could as well have been achieved in N-1 dimensions. So this works in

$$C(p+1,N)_2 = C(p,N-1)$$
 cases.

Counting (Ctd.)

- v If the linear separating hyperplanes must include the origin, i.e. $\mathbf{w}^*\mathbf{x}=0$, the set of patterns including the origin must be in general position. If not, i.e. $\mathbf{w}^*\mathbf{x}$ -T=0 with a free threshold T, only the set of patterns must be in general position.
- v Cover showed that this is necessary and sufficient.

Recursive Counting

- v In summary, we get C(p+1,N) = C(p,N) + C(p,N-1)
- v Since C(p=1, .) = 2, we can solve the recursion:

$$C(p, N) = 2 * \sum_{i=0}^{N-1} {p-1 \choose i}$$

v Note that this is still valid if $p \le N$, since

$$\binom{p-1}{p-1+i} = 0$$
 for $i > 0$.

Ex 5: Counting Dichotomies (1)

- In the following, use linear separating hyperplanes which include the origin. Draw 4 points, where these 4 points and the origin are in general position.

 With Cover, this gives $C(4,2) = 2 * \sum_{i=0}^{1} {3 \choose i} = 8$ dichotomies.
- *v* Use C(p=1, .) = 2, and Cover's recursion formula C(p+1,N) = C(p,N) + C(p,N-1), to arrive at the same number 8.
- v Draw these dichotomies.
- Draw 4 patterns, where exactly 2 patterns and the origin are on one line. Draw the linearly separable dichotomies which include the origin. What happens? Why?
- ν Draw 4 patterns such that only 2 linearly separable dichotomies are possible. Can this be derived from Cover's formula?

Ex 5: Counting Dichotomies (2)

- Allow for linear separating hyperplanes which do not include the origin. This is equivalent to adding a *threshold dimension*. With this extra dimension, drawing 4 points on a sheet of paper gives $C(4,2+1) = 2 * \sum_{i=0}^{2} {3 \choose i} = 14$ dichotomies.
- v Use C(p=1, .) = 2, and Cover's recursion formula C(p+1,N) = C(p,N) + C(p,N-1), to arrive at the same number 14.
- v Draw these dichotomies, and the remaining 2 which are not linearly separable.
- ν Draw 4 patterns which are not in general position, and the linear separable (<14) dichotomies.

Ex 5: Counting Dichotomies (3)

- Use C(p=1, .) = 2, and Cover's recursion formula C(p+1,N) = C(p,N) + C(p,N-1).
- υ Draw a 2-dim. tabloid in (p,N) with p>N. Count the ways of arriving, with Cover's recursion, at some point (p,N), and by this show, both for p>N and for p<N, that

$$C(p, N) = 2 * \sum_{i=0}^{N-1} {p-1 \choose i}$$

Refresh 2: Evaluating the binomials

v Binomials stem from

$$(a+b)^{p-1} = \sum_{i=0}^{p-1} \binom{p-1}{i} a^{i} b^{p-1-i}$$

v The sum of binomials is

$$\sum_{i=0}^{p-1} \binom{p-1}{i} = 2^{p-1}, \quad \sum_{i=0}^{p/2-1} \binom{p-1}{i} = 2^{p-2} \quad (p \text{ even})$$

Evaluating Cover's formula

 ν Let p even, then for N = p/2:

$$C(p, N) = 2 * \sum_{i=0}^{p/2-1} {p-1 \choose i} = 2*(2^{p-2}) = \frac{1}{2}2^{p}$$

- v At p=2N (α =2), the capacity condition is met.
- v For p >2N, the capacity condition will be violated.

Intermediate Resumé: Capacity of hard neurons

- o Our model of "hard" neurons $\mathbf{v} = \mathbf{sign}(\mathbf{W} * \mathbf{u})$ with N inputs has an information capacity of $\alpha = 2$, i.e. it can handle $\mathbf{p} = \alpha \mathbf{N} = 2$ N uncorrelated "tasks" correctly (by assigning its synaptic efficiacies).
- v If the tasks are highly correlated, the assignments will be grouped "close" together, and $\alpha>2$. This is the case for "ordinary" flower bouquets. Or, in Cover's model, less than half of all assignments must be processed by the neuron, i.e. only C < $\frac{1}{2}$ 2^p is required.

Ex 6: visualize C(p,N)

ν Write a Matlab program which computes for various p and for fixed N:

$$C(p, N)/2^p = 2^{1-p} * \sum_{i=0}^{N-1} {p-1 \choose i}$$

- v Draw the left hand side (LHS) as a function of α .
- v Now use the same program to draw more lines (in the same figure), each with different N. What happens? Why?

Ex 7: Analysis of C(p,N)

- ν Let lb be the binary logarithm, i.e. basis=2.
- Use the program from the previous exercise and draw for various N and $\alpha > 2$ $H_{N}(\alpha) = \frac{\text{lb } C(p, N)}{p}$
- ν Draw in the same figure for $\alpha > 2$

$$H(\alpha) = -\frac{1}{\alpha} lb(\frac{1}{\alpha}) - (1 - \frac{1}{\alpha}) lb(1 - \frac{1}{\alpha})$$

v When is this a good approximation? Why? Is there an ,information processing interpretation of H (α)?

Processing content?

- Note that high correlation means less information content: is it useful to be able to process more data (α >2) which contains fewer information (due to correlation)?
- v This can only be computed in the flower bouquet model.

[Get famous if you do it with Cover.]

Biased patterns

- v In autoassociative networks, consider biased patterns with bias $m = \frac{1}{N} \sum_{i=1}^{N} u_i^{\mu}$ or $\langle u_i^{\mu} \rangle = m$
- v This invokes a correlation

$$<\mathbf{u}^{\mu}\mathbf{u}^{\nu}>=\frac{1}{N}\sum_{i=1}^{N}< u_{i}^{\mu}u_{i}^{\nu}>=\frac{1}{N}\sum_{i=1}^{N}< u_{i}^{\mu}>< u_{i}^{\nu}>=m^{2}$$

v Bias is one (not the only) way of invoking correlation

Capacity for biased / correlated patterns

v One can show with methods from Statistical Physics for the flower bouquet model with large N:
[Gardner 1988]

α	m
2.0	0
2.0527	0.2
2.6675	0.6
6.0792	0.9
∞	±1

Information Content

v The information content of $p=\alpha N$ patterns with N bits each is N^2 I, with I given (Shannon) by

$$I(\alpha, m) = -\alpha \left[\frac{1+m}{2} lb(\frac{1+m}{2}) + \frac{1-m}{2} lb(\frac{1-m}{2}) \right]$$

- v Note $I(\alpha, m=0) = \alpha$ and $I(\alpha, |m|=1)=0$.
- v The factor [] decreases with increasing |m|

Information content with bias

v Now take the α values for bias!

m	α	$I(\alpha,m)$
0	2	2
0.2	2.0527	1.9938
0.6	2.6675	1.9257
0.9	6.0792	1.7411
±1	∞	0

v Clearly, a network can handle almost the same information content with correlated (biased) patterns, as long as |m| is noticeably < 1.

Benefits of correlation

- Hence one may spread a given information content into many correlated / biased patterns (redundancy) and have a neural network learn that.
- v That may have advantages (robust information processing).
- v We will show later that it doesn't take much longer to learn more but redundant data.

Resumé: Processing with hard neurons

- υ Hard neurons have sign as transfer function
- v Capacity α is an important information processing feature.
- v Capacity can be calculated by flower wrapping or dichotomy counting.
- v Hard neurons can handle $p = \alpha N = 2$ N uncorrelated ,,tasks" correctly (by assigning their synaptic efficiacies), and many more correlated ones.
- v The processable information content I is almost 2 even in correlated cases, which can be used for redundancy and hence, robustness.

