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Resumé of previous lecture 3
u A simple autoassociative network with 2 neurons was 

considered, 
partially connected = 3 of 4 weights

u Depending on the values of the weights, this network can have 
1 or 5 fixed points where the dynamics comes to a halt. I.e. at
these points, the firing rates v are constant.

u The fixed point v=(0,0) (no firing) is stable.
u There are other fixed points vπ(0,0) which are unstable, i.e. 

we have seen that small deviations from this point will not 
vanish in time, but add up to large amounts.

u The behaviour can be simulated in discrete steps. The role of  
Dt and t must be discussed.
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4. Hard delimiters
u We now look at feedforward networks
u We are interested in the information 

processing abilities of such networks, rather 
than in the individual neuron‘s performance

u Hence, we simplify the firing rate equation 
further, using hard delimiters. (or threshold  
activation functions)
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Hard delimiters
u Instead of using tanh, one can use a similar but 

hard delimiter: sign.
u Note that                                                    and 

or

if

v)*Msign(vv)*Mtanh(vv 11 −− +−≅+−= γγγτ
dt
d

)()tanh( xsignx  → ∞→γγ

)v*Msign(vvv tttt

t
11 )( −+ +−=−

∆
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„Hard“ feedforward networks
u Write                    and choose Dt= t
u Then for feedforward networks with input u, 

output v:
u Regard 1 time step as 1 forward processing:

u Note that due to sign, (u,v) can only attain 
values ≤1.

WM =−1γ

)u*Wsign(v tt =+1

u)*Wsign(v =
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An information processing question
u Let different sets m of inputs to a neuron be 

given as      , and corresponding outputs        .
u How many (p) different sets of these input-

output-relations can be realized with the same 
set of weights W? I.e. is the neuron able to 
handle p „tasks“ correctly?

u If dim(u)=N, a=p/N is called the 
„information capacity“ or simply, capacity.

u This already supposes that p scales             .

µu µv

Np ∝
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Capacities
u In a single feedforward neuron, this asks to 

simultaneously satisfy the p equations

u Since (u,v) =≤1, this is equivalent to

u Defining a vector                  (x=≤1) we have 
or

)u*w( µµ signv =

)u*w( µµvsign=1
µµµ xu =v

)x*w( µsign=1 p...1    ;     0 => µµx*w
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Refresh: Binomials
u The number of ways of arranging k items 

within N, without regarding the order, is  

u Example: 3 students out of 5 can be selected in 
10 ways.

u Further:   
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Geometric interpretation 1:
Wrapping flower bouquets
u Not just for ladies ....

x   w x      w x
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N-dimensional cones
u With N-dimensional x, w is the centre of an N-

dimensional cone which wraps the flowers     .
u The p conditions                are the wrapping 

conditions:  as long as they are satisfied for 
one w, the bouquet is „wrappable“.

u The capacity is the amount of flowers 
wrappable per dimension.

µx

0>µx*w
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Example: flower wrapping
u Since x=≤1, we have in general 2N flowers.
u In N=2 dimensions, we have 4 possible flowers. 
u p=3 of these 4 are (at most) wrappable (almost).
u We now take all S=       selections of p flowers.
u The capacity is reached if for half of these S many, the 

bouquet is wrappable (probabilistic definition). 
u For N=2, p=3, all S=     = 4 selections are wrappable.
u For N=2, p=4, the S=1 selection is not wrappable  
u Hence, for N=2, we have a=p/N=3/2= 1.5


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Limitations
u All S=       selections of p flowers have to be 

considered for the flower wrapping equations.
u Since               , 

u This becomes prohibitively large even for 
moderate N. So a different approach is needed.
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Ex4: Capacities in 3,N dimensions 
u What is the wrapping capacity for N=3? 
u [Ladies only: for N=3, is that what you

always/normally/sometimes/never get?
If there is a difference: why?]

u Do you have an idea/educated guess what the 
capacity would be for large N?
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Geometric Interpretation 2:
Arranging Sets in Dichotomies
u Regard again the p eqns.
u For any given set of p inputs, there are  2p ways of 

assigning the outputs. One such way is called a 
dichotomy.

u Of these,  C dichotomies can be realized by the neuron by
arranging w. These dichotomies are linear separations of 
the 2 classes of data. w*x=0 defines a linear separating 
hyperplane.

u The capacity is reached at C = ½ 2p , 
i.e. half of all assignments can be processed by the neuron
/ can be linearly separated.

)u*w( µµ signv =
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Dichotomies für p=3, N=2:
u 8 = 2p Dichotomies with linear separating

hyperplanes:
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General position
u p vectors in N dimensions are said to be in 

„general position“ if no subset of M §N
vectors are linearly dependent.

u Example 1: in N=3 dimensions,  a subset M=3 
of p vectors are situated on 1 line. Then the p
vectors are not in general position. 

u Example 2: in N=9 dimensions,  a subset M=7 
of p vectors are situated in a 4d-subspace. 
Then the p vectors are not in general position.
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C(p,N) = 2p (a¥1) for p § N.
u If p§N, and we can always use the flower 

bouquet inequalities                 and demand an 
even tighter condition,  

u We then have p(§ N) linear equations in N 
variables w which, if the patterns are in
general position, can always be solved.

u This works for all assignments of outputs, so 
C(p,N) = 2p for p § N, hence a¥1.

0>µx*w
1=µx*w
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Counting Theorem (Cover 1965)
u Compute the number of available dichotomies C(p,N) 

recursively (Thomas Cover, 1965):
u p patterns in N dimensions are assigned to C(p,N)

many dichotomies. Now add one more pattern.
Without changing anything in the C different weight 
vectors w, the new pattern will be assigned according
to . 

u This yields the same number of dichotomies
C(p+1,N)1 = C(p,N)

)u*w( µµ signv =
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Counting (Ctd.) 
u If one wants to have the other assignment for the new

pattern, with all previous assignments fixed, it is 
necessary to modify w. 

u For doing  so, one needs one degree of freedom. This is 
given if the assignment of the previous p patterns could
as well have been achieved in N-1 dimensions. So this
works in 
C(p+1,N)2 = C(p,N-1) cases.
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Counting (Ctd.) 
u If the linear separating hyperplanes must include the

origin, i.e. w*x=0 , the set of patterns including the 
origin must be in general position. If not, i.e. w*x-T=0 
with a free threshold T, only the set of patterns must be
in general position. 

u Cover showed that this is necessary and sufficient.
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Recursive Counting
u In summary, we get 

C(p+1,N) = C(p,N) + C(p,N-1)
u Since C(p=1, .) = 2, we can solve the recursion: 

u Note that this is still valid if p §N, since 

for i > 0.








 −
∑
= i

p 1
  * 2 = N)C(p,

1-N

0i

0
1

1
=









+−
−

ip
p



Andreas Wendemuth, Otto-von-Guericke-Universität Magdeburg, SS 2006
22

Ex 5: Counting Dichotomies (1)
u In the following, use linear separating hyperplanes which include 

the origin. Draw 4 points, where these 4 points and the origin are
in general position. 
With Cover, this gives                                              dichotomies. 

u Use C(p=1, .) = 2, and Cover‘s recursion formula C(p+1,N) = 
C(p,N) + C(p,N-1), to arrive at the same number 8.

u Draw these dichotomies.
u Draw 4 patterns, where exactly 2 patterns and the origin are on 

one line. Draw the linearly separable dichotomies which include 
the origin. What happens? Why?

u Draw 4 patterns such that only 2 linearly separable dichotomies 
are possible. Can this be derived from Cover‘s formula?

 8
3

 * 2 = C(4,2)
1
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Ex 5: Counting Dichotomies (2)
u Allow for linear separating hyperplanes which do not include 

the origin. This is equivalent to adding a threshold dimension. 
With this extra dimension, drawing 4 points on a sheet of 
paper gives                                                     dichotomies. 

u Use C(p=1, .) = 2, and Cover‘s recursion formula C(p+1,N) = 
C(p,N) + C(p,N-1), to arrive at the same number 14.

u Draw these dichotomies, and the remaining 2 which are not 
linearly separable. 

u Draw 4 patterns which are not in general position, and the
linear separable (<14) dichotomies.

 14
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Ex 5: Counting Dichotomies (3)
u Use C(p=1, .) = 2, and Cover‘s recursion formula C(p+1,N) = 

C(p,N) + C(p,N-1).
u Draw a 2-dim. tabloid in (p,N) with p>N. Count the ways of 

arriving, with Cover‘s recursion, at some point (p,N), 
and by this show, both for p>N  and for p<N ,
that
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Refresh 2: Evaluating the binomials
u Binomials stem from

u The sum of binomials is

,                                    (p even)
1
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Evaluating Cover‘s formula
u Let p even, then for N = p/2:

u At  p=2N (a=2), the capacity condition is met.
u For p >2N, the capacity condition will  be 

violated.

pp
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Intermediate Resumé: 
Capacity of hard neurons
u Our model of „hard“ neurons

with N inputs has an information capacity of a=2,
i.e. it can handle p= aN = 2 N uncorrelated „tasks“ 
correctly (by assigning its synaptic efficiacies).

u If the tasks are highly correlated, the assignments will 
be grouped „close“ together, and a>2. This is the case 
for „ordinary“ flower bouquets. Or, in Cover‘s model, 
less than half of all assignments must  be processed 
by the neuron, i.e. only C < ½ 2p is required.   

u)*Wsign(v =
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Ex 6: visualize C(p,N)
u Write a Matlab program which computes for 

various p and for fixed N:

u Draw the left hand side (LHS) as a function of a. 
u Now use the same program to draw more lines 

(in the same figure), each with different N. What 
happens? Why?
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Ex 7: Analysis of C(p,N) 
u Let lb be the binary logarithm, i.e. basis=2.
u Use the program from the previous exercise and draw 

for various N and a > 2

u Draw in the same figure for a > 2

u When is this a good approximation? Why? Is there an 
„information processing“ interpretation of H (a)?

p
N)C(p, lb  )(HN =α

)l1(lb)l1()l(lb1   )H(
αααα

α −−−−=
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Processing content?
u Note that high correlation means less 

information content: is it useful to be able  to
process more data (a>2) which contains fewer 
information (due to correlation)?

u This can only be computed in the flower 
bouquet model.
[Get famous if you do it with Cover.]
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Biased patterns
u In autoassociative networks, consider biased 

patterns with bias                        or 
u This invokes a correlation 

u Bias is one (not the only) way of invoking 
correlation
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Capacity for biased / correlated patterns

u One can show
with methods 
from Statistical
Physics for the
flower bouquet
model with 
large N:
[Gardner 1988]

0.96.0792

≤1¶

0.62.6675
0.22.0527
02.0
ma
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Information Content
u The information content of p=aN patterns with 

N bits each is N2 I, with I given (Shannon) by

u Note I(a ,m=0) = a and I(a ,|m|=1)=0.
u The factor [] decreases with increasing |m|
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Information content with bias
u Now take the 
a values for bias!

u Clearly, a network can  handle almost the same 
information content with correlated (biased) 
patterns, as long as |m| is noticeably < 1. 

1.74116.07920.9
0¶≤1

1.92572.66750.6
1.99382.05270.2
220
I(a,m)am
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Benefits of correlation
u Hence one may spread a given information 

content into many correlated / biased patterns
(redundancy) and have a neural network learn 
that.

u That may have advantages (robust information 
processing).

u We will show later that it doesn‘t take much 
longer to learn more but redundant data.
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Resumé: Processing with hard neurons
u Hard neurons have sign as transfer function
u Capacity a is an important information processing feature.
u Capacity can be calculated by flower wrapping or 

dichotomy counting.
u Hard neurons can handle p= aN = 2 N uncorrelated „tasks“

correctly (by assigning their synaptic efficiacies), and 
many more correlated ones.

u The processable information content I is almost 2 even in 
correlated cases, which can be used for redundancy and 
hence, robustness.


