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Synpopsis:

1) Derivation of firing-rate models

2) Feedforward networks and coordinate transforms
3) Recurrent networks and selective amplification
4) Recurrent networks and associative memory

Credits:

Dayan & Abbott, Chapter 7
Salinas & Abbott (1995) Transfer of coded information from sensory to motor networks. J Neurosci 15:
6461-6474.

1.2 Firing-rate model
For one model node, we define the input (pre-synaptic) firing rate vector @(t) and the output (post-

synaptic) firing rate v(t). We assume a synaptic current with time-course K, (t), a synaptic weight of w,
and compute the total synaptic current I:

t
LO=Y ht)=> w Y Kit—t)=w, / K(t —7) py(7) dr po(r) = 8(r—t)
b b i el i

where b indexes synapses and ¢ indexes spikes at each synapse.

We can ignore ”spike train variability” (i.e., replace spike train py(t) by spike rate u(t)) if (i) the synapse
current K(t) is slow or (ii) the spikes arriving at different synapses are uncorrelated.

output v =F(ls)

weights w
input U

Figure 7.1: Feedforward inputs to a single neuron. Input rates u drive a neuron
at an output rate v through synaptic weights given by the vector w.

1 Derivation of firing-rate models

1.1 The need to simplify

A typical network of cortical neurons involves at a minimum some millions of excitatory and inhibitory
neurons (150,000 per mm?), each with complex dendrites and axons, with many types of membrane
channels for Nat, K+, Ca%t, etc. and receiving input and emitting output through 8,000 synapses on
average. Models of this scale are extremely expensive and unwieldy (many time-scales!).

To simplify, we can consider the firing rate of sub-populations rather than the spiking of neurons. For
example, we can consider a cortical column as a single model node.

1.3 Two time constants

To a first approximation, the synaptic current I4(t) is a low-pass filtered version of the input firing u(t).
This means that we can express their relation in terms of a differential equation:

t dI,
Is:Zwb/ K (t — 1) up(r) dr & Tsd—::fls+z wy Up
b Bl b

This equation is exact, if the K,(t) is an exponential decay with time-constant 7, (try to prove this!):

1 t
K(t) = o exp (—:)
s s

For an electrotonically compact dendrite, 7, reflects the time-constant of the synaptic conductance, which
may be as short as a few milliseconds (e.g. AMPA glutamate receptors). For a synapse on the distal part
of a thin dendrite, it may be larger.

Similarly, the output firing rate v(t) approximates a low-pass filtered version of the synaptic current I,(t),
producing a second differential equation:

dv
TTE =—v+ F(I)
where F(I;) is the activation function”.

The time-constant 7, is NOT the membrane time-constant. Most network models use considerably value
of 7, that is considerably less than the membrane time-constant. Detailed simulations show that the
effective value of 7, depends on the firing-rate regime. Low-pass filtering by the membrane time-constant
can be neglected if the neuron is always firing (i.e., always close to threshold) but must be taken into

account otherwise.
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1.4 Compact model

We now consider ways of combining our equations for I, and v into a more compact model:

dl. dv
Tsd—::—ls+zb:wbub:—ls+w~u TTE:—'U‘FF(IS)

If 7, >> 74, we can replace I by its equilibrium value

Isy=w-u = TT—U:—vﬁ-F(w-u)

dt

Alternatively, if 7. << 75, we can replace v by its equilibrium value F(I;) and use

dI
Tsd—tszfls+w-u with v=F(I,)
In both cases, the steady-state firing rate v, is given by

Voo = F (w - u)

These approximations suffice to show the computational potential of network models. More accurate
models would explicitly model individual spikes. However, provided that the spikes in a spiking model
do not synchronize, the predictions of rate models are typically quite accurate.

Figure 7.2: Firing rate of an integrate-and-fire neuron receiving balanced exci-
tatory and inhibitory synaptic input and both constant and sinusoidally varying
injected current. For the left panels, the constant component of the injected current
was adjusted so the firing never stopped during the oscillation of the varying part
of the injected current. For the right panel, the constant component was lowered
so the firing stopped during part of the cycle. The upper panels show two rep-
resentative voltage traces of the model cell. The histograms beneath these traces
were obtained by binning spikes generated over multiple cycles. They show the
firing rate as a function of the time during each cycle of the injected current oscil-
lations. The different rows show 1, 50, and 100 Hz oscillation frequencies for the
injected current. The solid curves show the fit of a firing-rate model that involves
both instantaneous and low-pass filtered effects of the injected current. (Adapted
from Chance et al, 2000.)

A good fit requires activity-dependent T(v)
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Figure 7.3: Feedforward and recurrent networks. A) A feedforward network with
input rates u, output rates v, and a feedforward synaptic weight matrix W. B)
A recurrent network with input rates u, output rates v, a feedforward synaptic
weight matrix W, and a recurrent synaptic weight matrix M. Although we have
drawn the connections between the output neurons as bidirectional, this does not
necessarily imply connections of equal strength in both directions.



1.5 Feedforward and recurrent networks

In a feedforward network, N, input units with rates w are driving N, output units with rates v, it is
convenient to use vector notation and assemble the synaptic weights wo; (i.e., from input unit 7 to output
unit o, not the order of indices) into a matrix W. The output rates are then determined by a system of
equations as follows:

dv dv,
TTE——U+F(W-U) or TTE——UD-kF(ZWmuz)

i

In a recurrent network, there exist additional interconnections between output neurons, which are de-
scribed by a synaptic matrix M. Matrix element M,, gives the weight of the connection from output
unit @’ to output unit a (again note order of indices). The equations governing this recurrent network
are:

. F(M-v+W v _ FIS M, w,
g = VtFM-viWeu)  or  nl=—v,+ ; oa/vor+zi: i Ui

In biologically detailed networks, the connectivity matrices W and M exhibits certain patterns, for
example, that weights originating from one neuron must all have the same sign, because individual
neurons are either excitatory or inhibitory ("Dale’s law”). However, in firing-rate models, connections
originating from one NODE (i.e., a population of excitatory and inhibitory neurons) can easily have
different signs. Accordingly, a rate model does not have to be constrained by Dale’s Law.
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2 Feedforward networks and coordinate transforms

2.1 Parietal cortex
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Figure 7.4: Coordinate transformations during a reaching task. A, B) The location
of the target (the grey square) relative to the body is the same in A and B, and thus
the movements required to reach toward it are identical. However, the image of
the object falls on different parts of the retina in A and B due to a shift in the gaze
direction produced by an eye rotation that shifts the fixation point F. C) The angles
used in the analysis: s is the angle describing the location of the stimulus (the tar-
get) in retinal coordinates; g is the gaze direction angle, indicating the orientation
of the eyes relative to the body. The direction of the target relative to the body is
s+g.



Reaching movements necessitate coordinate transforms between retinal and body coordinates. For ex-
ample, target direction in body coordinates is the sum of target direction in eye coordinates and gaze
direction in body coordinates.

Visual neurons in parietal cortex are sensitive to particular retinal locations: their receptive field is in
EYE coordinates. Parietal cortex projects to premotor cortex, where some neurons also respond to visual
stimuli. However, their receptive field is in BODY coordinates: Changing gaze direction leaves the tuning
curve unchanged, but rotating the head shifts the tuning curve shifts by the same angle.

How can visual neurons with receptive fields in EYE coordinates drive pre-motor neurons with receptive
fields in BODY coordinates?

object in eye coords

coord transform
R —>
object in body coords

gaze in body coords

The answer was discovered by Richard Andersen and colleagues, who recorded in parietal cortex and
found that visual receptive fields are often linearly modulated by eye position (Zipser, Andersen, 1988).
Subsequent work (Salinas Abbott, 1995; Pouget, Sejnowski, 1995) proposed the following dependence
on stimulus position s (in retinal coordinates) and on gaze position g (in body coordinates) for these
neurons:

om g = 2RO ()

1+exple(g—1) 20?
where £ and v are the preferred stimulus position and the critical gaze position, respectively. These

functions describe a Gaussian tuning for s — ¢ and a sigmoidal increase in response gain (or amplitude)
for g — . The neurons are thus ”stimulus-tuned” and ”gaze-modulated”.
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Figure 7.5: Tuning curves of a visually responsive neuron in the premotor cortex
of a monkey. Incoming objects approaching at various angles provided the visual
stimulation. A) When the monkey fixated on the three points denoted by the cross
symbols, the response tuning curve did not shift with the eyes. In this panel, unlike
B and C, the horizontal axis refers to the stimulus location in head-based, not reti-
nal, coordinates (s + g, not s). B) Turning the monkey’s head by 15° produced a 15°
shift in the response tuning curve as a function of retinal location, indicating that
this neuron encoded the stimulus direction in head-based coordinates. C) Model

Our input layer u models visual area 7a and consists of a population of such gain-modulated units u(§,7),
representing all possible combinations of € and «. This population feeds via a connectivity matrix w(€,)
into an output unit v, which models a unit in pre-motor cortex. We neglect dynamic effects and consider
only the steady-state response of the output unit, which is given by

v = F [,:5 pr [wlem iuts-€.9-) dfdv]

Is there a connectivity matrix w(£,~), such that the output response is a function of s + g? Yes, there
is! In other words, our feed-forward network can respond to stimulus location in BODY coordinates.

Motor area (PMC), RFs in body coords

output ©
weights w
input u

Visual area (7a), RFs in eye coords



Which weighted sum extracts s+g ?
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2.2 Feed-forward coordinate transform: an example

‘We consider a particular example for coordinate transformations on the basis of gain modulated response.
We consider the feedforward projection between a sensory network, where activity depends on retinal
position z and gaze position y, and a motor network, where activity depends on target position z.

m .
Rj motor firing rate cj preferred target position z

5 motor noise
training inputs

a; preferred retinal position x

R sensory firing rate
b; preferred gaze position y

7 sensory noise

Proof:

Change the integration variables:
§—¢—yg
T—oYtg

Voo = F |:p5p7 /w(g—g,7+g)fu(s—5+y,—v)d£dv]

We can now see that v is a function of s+ g provided that w(§ — g, +g) = w(§,7) (i.e., provided that
he g-dependencies of w cancel). This, in turn, is the case if w is a function of & + :

w(é,y) = w(é+7)

Uoo(s+.9):F|:p§p’Y /w(5+7)fu(3+9—£,—7)d£d7]

QED.

gaze angle y

visual angle &

Sensory activity is given by a Gaussian tuning curve (average activity) for stimulus position and gaze
position with additive noise. The noise is Gaussian distributed around a zero mean. Its standard deviation

is very large and equal to the average firing rate:
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Alternatively, sensory activity might exhibit Gaussian tuning for stimulus position only, with multiplica-
tive gain-modulation by gaze position:

R} = Rpag f(ai —x) ¢’ (bi —y) + s
_ (ai — 2)° rop oy exp ki (bi —y)]

where b; is the ’threshold’ gaze position, and s; is the positive or negative slope of the gaze-dependence.
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In the training phase, the system generates random movements and compares correlated sensory inputs.

Gaussian times linear ramp

For example, a baby randomly moves its hands and visually follows these movements, giving its brain the
opportunity to associate eye position, gaze position, and hand position. Once the association has been

learned, the baby can visually coordinate movements.

Sensory neurons (x+y)

i is given by is the covariance rule, which will be discussed

W

A suitable set of connection weights

later in the course. The covariance rule states that positive and negative connections weights should be

proportional to the covariance in the activities of each pair of neurons i and j:

Wji= [dzg(le; —2|) f(lai — x|, |b;i —y|) — &

weights in an alternative way, by integrating the product of tuning functions over all possible eye and

Given the tuning functions of sensory and motor layers, we can compute the desired set of connection
gaze positions:
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In the mature system, activity in the sensory network drives activity in the motor network through

, to translate activity in the

that is

motor population into a motor position z. We use an activity-weighted average over the preferred motor

The last step is to decode the motor activity,
positions ¢; of all neurons j:

Wjs.

synaptic couplings

Operating phase with mature synapses @
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m
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Here we compare true position with position inferred during the training phase (activity given by tuning

curves) and during the operating phase (activity given by feedforward input):

motor firing rate cj preferred target position z
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motor noise
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3 Recurrent networks

B

output v

\4Y

input U

3.1 Linear networks and selective amplification

While recurrent networks offer a far wider range of behaviours than feedforward models, they are also sig-
nificantly more difficult to analyse. To develop some insight and intuition into recurrent dynamics, we first
consider a model with a linear activation function F(I,). Note that this has some highly non-biological
consequences (e.g., firing rates can become negative). The dynamic equation of a linear recurrent model
with 7. >> 7, is

dv
TTE:7v+h+M-v

where 7, is the time-constant with which firing follows soma current, v is the output activity vector, h is
the feedforward input, and M is the recurrent connectivity matrix. If M is symmetric, the eigenvectors

N-dimensional space (N = no. of network nodes)

vo= Y15 e

v i

steady-state
v o0

1/(1=X)

e, e, =10,

form an orthogonal basis and we can solve for the activity in terms of linear combinations of eigenvectors:

M-eu:/\“e# eu'eV:(Suu
e,-h
v(t):Zc,(t)e,, vx:Zl_)\ e,

For A, > 1, the exponential functions grow without bound and the network is unstable. For A, < 1, the
network approaches its steady-state value v, with time constants 7,./(1 — A,u). In this steady-state, the
projection of input vector h onto eigenvector e, is amplified by a factor 1/(1 —X,).

Suppose that two eigenvectors e; and ez have identical eigenvalues \; = A2 < 1 and that the other
eigenvalues are much smaller than unity. In this case, the response is dominated by the projection of
the input vector onto the plane defined by e; and e;. The amplitude of the response is multiplied by

/(1= Xp):
N (er-h)ey + (ex-h)es
1-X\
Accordingly, the network selectively amplifies input fluctuations that happen to coincide with the two

degenerate eigenvectors. A recurrent network with n degenerate eigenvalues can amplify the projection
of the input into the n-dimensional subspace spanned by the degenerate eigenvectors.
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3.2 Non-linear networks and selective amplification

A linear network is of limited value in describing neural networks, because it allows negative firing rates.
To fix this problem, we need to introduce a non-linear activation function, for example a threshold
rectification:

—uzfv«}-F(hﬁ-M-u)

7 Fh+ M -v)=h+M- -v—7].

Tr

This modification retains some of the features of linear models, but also introduces some new features.
In particular, consider a continuous model with recurrent couplings, which converges to a steady-staty
for any constant input (provided that A is not too large):

dv(6) _
dt

- —v(0) + |:h(0) + /_7r M(6,6")v(0") o’ M@-0)= :—;0 cos(0 — ')

00 / MO =68 en(8)d8 = A, en(8) A= o / MO —0') cos(ud’) b’

AM=1 A1 =0

This network selectively amplifies a noisy input. The steady-state activity profile resembles the positive
part of a sinus function (rectification!). Due to the suppression of negative input, the network remains
stable for larger values of A;. Compared to the linear network, more Fourier components are amplified.
However, the amplification does remain selective.

—

Figure 7.8: Selective amplification in a linear network. A) The input to the neu-
rons of the network as a function of their preferred stimulus angle. B) The activity
of the network neurons plotted as a function of their preferred stimulus angle in
response to the input of panel A. C) The Fourier transform amplitudes of the input
shown in panel A. D) The Fourier transform amplitudes of the output shown in
panel B. The recurrent coupling of this network model took the form of equation
7.34 with A = 0.9. (This figure, and figures 7.9, 7.12, 7.13, and 7.14, were generated
using software from Carandini and Ringach, 1998.)

Figure 7.9: Selective amplification in a recurrent network with rectification. A)
The input A(6) of the network plotted as a function of preferred angle. B) The
steady-state output v(6) as a function of preferred angle. C) Fourier transform
amplitudes of the input #(0). D) Fourier transform amplitudes of the output v(6).
The recurrent coupling took the form 7.34 with A; = 1.9,
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3.3 Simple and complex cells
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3.3.1 Recurrent model of simple cells

Cortical neurons receive far more recurrent inputs (i.e., from other neurons in the same area) than feed-
forward inputs (e.g., from thalamic relay neurons). This suggests that recurrent interactions may play
an important role in shaping response properties. To model the possible effect of such interactions, we
add a global inhibition to our favorite connectivity matrix and assume that the input is only weakly
orientation-dependent:

dv(9)
dt

/2
2P0 0y + |ho) + / [—Ao + A1 cos(2(6 — )] v(8') do'

—n/2

+
h(8) = A [1 — € + € cos(26)]

where A is the input strength and e parameterizes the orientation dependence. For € = 0, all units receive
identical input, regardless of orientation. While the steady-state response v(f) represents an activity
distribution across the network, it can also be read as the ’tuning function’ of a particular network unit.
In this model, recurrent interactions amplify tuning curves but do not broaden them, consistent with
experimental observations.
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Figure 7.10: The effect of contrast on orientation tuning. A) The feedforward in-
put as a function of preferred orientation. The four curves, from top to bottom,
correspond to contrasts of 80%, 40%, 20%, and 10%. B) The output firing rates
in response to different levels of contrast as a function of orientation preference.
These are also the response tuning curves of a single neuron with preferred orien-
tation zero. As in A, the four curves, from top to bottom, correspond to contrasts
of 80%, 40%, 20%, and 10%. The recurrent model had 1y = 7.3, A; =11, A =40
Hz, and € = 0.1. C) Tuning curves measure experimentally at four contrast levels
as indicated in the legend. (C adapted from Sompolinsky and Shapley, 1997; based
on data from Sclar and Freeman, 1982.)
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Figure 7.11: A recurrent model of complex cells. A) The input to the network as
a function of spatial phase preference. The input l(¢) is equivalent to that of a
simple cell with spatial phase preference ¢ responding to a grating of zero spatial
phase. B) Network response, which can also be interpreted as the spatial phase
tuning curve of a network neuron. The network was given by equation 7.39 with
1 =0.95. (Adapted from Chance et al, 1999.)

3.3.2 Recurrent model of complex cells

Recall that complex cells (in contrast to simple cells) do not have distinct ON and OFF regions in
their receptive fields and are therefore insensitive to stimulus phase. This model to be discussed shows
that recurrent connections between simple cells can almost eliminate their dependence on phase (if the
coupling is sufficiently strong). We consider a population of neurons tuned to different stimulus phases
¢, with ubiquitous connections of constant strength M (¢, ¢') = A\1/(2mpy):

7 )+ [mo+ 52 [ ras] h(6) = 4 [cos.

For A\; = 0, the output exhibits the same phase-dependence as the input, v(¢) = h(¢). As the value
of A1 grows close to one, the output looses its phase-dependence almost completely. In other words,
the coupling turns simple cells into complex cells. The mathematical reason is that the eigenfunction
associated with A; is flat, that is, independent of spatial phase. As a result, the network amplifies input
activity independent of spatial phase.
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Complex cells as networked simple cells

1 Associative memory

4 Low gain The principle of ”associative” or ”content-addressable” memory is that a partial or corrupted exemplar

/ is used to recall the full item. This type of memory device is thought to provide a model for mammalian
Feedforward model of complex cells memory systems that are characterised by recurrent connections, such as area CA3 of hippocampus or
prefrontal cortex.

We already encountered networks with one stereotypical activity profile. We now consider networks with
a broader set of characteristic activity profiles, which we call memory patterns. The recall of a particular
memory item is thus modelled as a particular activity profile. Note that memory patterns are stored
in the synaptic weights, not in persistent activity. Persistent activity serves to signal the most recently

s

. Complex cells as networked simple cells ‘
_ recalled memory item.
’—I@ From another point of view, the network performs a kind of pattern matching, that is, it finds the
memory pattern that most closely matches an initial pattern. Specifically, the network is initialised to
/ an input pattern and allowed to relax to a fixed point. The fixed point activity is treated as the desired
output, namely, the best match among the memory pattern. Recall the maximum likelihood decoding
. . (curve fitting) example from earlier lecture, in which an approximate or distorted input is turned into a
High gain stereoptyped output.

\»

Ghance, Nelson & Abbott, 1999

5 Example network

From yet another point of view, the network can be considered to traverse an ”energy surface”, where

(‘,'d(t‘h stored memory pattern has a ”basin of atfrﬂf‘tloll' , which is defined as the set of initial sta‘t(‘,s for We consider the following example network with a sigmoidal non-linearity in the activity function F(I,)
which the memory relaxes. The networks with which we are concerned always relax to a fixed point. : . e e .
and time-constant 7,, maximal activity 7., = 150Hz, and background activity (negative threshold)
v=—20Hz:
dv Iy —
Tr—— =—v+ F(M . v) F(Is) = T'maz |tanh 2 =1
dt Tmaz /] +

With this network has N, units we will store N,,e,, activity patterns v™, where N,ep, << N,. For
simplicity, we consider patterns containing aN, components of value ¢ and (1 — a)N, components of
value 0. Parameter « represents the ”sparseness” of the memory patterns. Following the example of the
book, we use N, = 50, Nypem = 4, and a = 0.25.

When the network starts in an initial state approximately proportional to one of the memory patterns,
we would like it to evolve towards a fixed point of the corresponding memory pattern.

Ky
38
%
RS

X

!

%

X
%

=
<< <5
SIS
SIS
SIS

o
R0
S8
X
0

3

SISO
SESESSIISSIS
SESERSISSSSIS,
53 <5

&
W%
6
R

XXX
SN

&

v(t) — o™ v =F(M-v™)

R

2
22
s
2,
S50
ey

O
i
%

o
‘0

s Saturating non-linearity

w
=

) ) ED E)
Current |_[Hz]




To find a suitable connection matrix M, we first consider a matrix K that has the to-be-stored patterns
v, as eigenvectors:

K-v™=\v™

nn 1
or Myy = Kaor —
aN, a N,

M=K -

The vector n is defined with IV, components equal to one. Note that we are using the ”vector outer
product” @y which produces a matrix.

n-v" =cal, v v xcta’N, n#m v™ . o™ =c?aN,
The fixed point condition can be rewritten as
Av™ =F (Av™ —cn) since M -v"=Av"—cn

Taken component by component, this yields two conditions, one for components ¢ and another for com-
ponents 0:

0=F[—( if ™ =0
c=Flc(A-1)] if  v™=0

It’s not hard to find non-linearities F'() which satisfy these conditions. The problem thus reduces to
finding a suitable matrix K.

Memory patterns are fixed points

A simple way of constructing a symmetric connection matrix M with the desired properties is to sum
the covariance matrices of the stored memory patterns plus a general inhibitory term:

Noe
1.25 mem
M= ———- ™ —an) (v —an)— nn
(I1-a)an, ( ) ( ) aN,
m=1
Memorized patterns Nmem Individual covariance matrices Superposition of covariance matrices

o — — —
Network size Nv

Network size Nv
— — — i — —
o ——— -

Network size Nv

A simple way of constructing a symmetric connection matrix M with the desired properties is to sum
the covariance matrices of the stored memory patterns plus a general inhibitory term:

N,

1.25
M= _——— v" —an) (v —an)— nn
(—a)ah, mZ:l ( ) ( ) -GN
In this case, the conditions to be satisfied are
Fl-c(1+aX)]=0 c=Fle(A-1—al)

If furthermore the neglected residual terms are small, the network will perform as an associative memory.
Otherwise, if Nymem =~ Ny, the residual becomes large enough to destabilize the memory states as fixed
points. Note that large networks can store large numbers of patterns only if these patterns are sparse.
The covariance prescription used here is far from optimal, more efficient methods can be devised.
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Figure 7.16: Associative recall of memory patterns in a network model. Panel A
shows two representative model neurons, while panels B and C show the firing
rates of all 50 cells plotted against time. The thickness of the horizontal lines in
these plots is proportional to the firing rate of the corresponding neuron. A) Fir-
ing rates of representative neurons. The upper panel shows the firing rate of one
of the excitatory neurons corresponding to a nonzero component of the recalled
memory pattern. The firing rate achieves a nonzero steady-state value. The lower
panel shows the firing rate of another excitatory neuron corresponding to a zero
component of the recalled memory pattern. This firing rate goes to zero. B) Recall
of one of the stored memory patterns. The stored pattern had nonzero values only
for cells 18 through 31. The initial state of the network was random but with a bias
toward this particular pattern. The final state is similar to the memory pattern. C)
Recall of another of the stored memory patterns. The stored pattern had nonzero
values only for every fourth cell. The initial state of the network was again random
but biased toward this pattern. The final state is similar to the memory pattern.



