Cognitive Neuroscience II

Prof. Dr. Andreas Wendemuth

Lehrstuhl Kognitive Systeme
Institut für Elektronik, Signalverarbeitung und
Kommunikationstechnik

Fakultät für Elektrotechnik und Informationstechnik Otto-von-Guericke Universität Magdeburg

http://iesk.et.uni-magdeburg.de/ko/

Lecture 14

▼ Instrumental conditioning:
 Actions of the animal determines which reinforcement is provided

- Static Action Choice (direct rewards)
- Sequential Action Choice (delayed rewards)

Static Action Choice

- ▼ Animals develop policies (plans of action that increase reward)
- **▼** Example: foraging bee, blue and yellow flowers:
- ▼ Reward rb from probability density function (pdf) p[rb], reward ry from p[ry]
- ▼ Stochastic policy P[b], P[y]=1-P[b], parametrized as softmax functions with *action values* mb, my and *exploration parameter* β.
- **▼** Exploration-exploitation dilemma.

Stochastic policy

▼ Sigmoids
$$P[b] = \frac{\exp(\beta mb)}{\exp(\beta mb) + \exp(\beta my)}$$

- Adjusting the parameters:
 - Indirect actor: estimate nectar volume by delta rule
 - Direct Actor: maximize expected average reward
- ▼ as follows:

Indirect actor

- ▼ Estimate nectar volume mb = <rb>
- ▼ Delta rule (Rescola-Wagner): on blue flower, rb is received and mb was expected, so change $mb \rightarrow mb + εδ$ with δ = rb mb , the same on yellow flower. I.e. if the pdfs p[rb], p[ry] change slowly relative to learning rate, this converges.
- \bullet exploration parameter β not changed.

Indirect actor-model

Figure 9.4: The indirect actor. Rewards were $\langle r_b \rangle = 1$, $\langle r_y \rangle = 2$ for the first 100 flower visits, and $\langle r_b \rangle = 2$, $\langle r_y \rangle = 1$ for the second 100 flower visits. Nectar was delivered stochastically on half the flowers of each type. A) Values of m_b (solid) and m_y (dashed) as a function of visits for $\beta = 1$. Because a fixed value of $\epsilon = 0.1$ was used, the weights do not converge perfectly to the corresponding average reward, but they fluctuates around these values. B-D) Cumulative visits to blue (solid) and yellow (dashed) flowers. B) When $\beta = 1$, learning is slow, but ultimately the change to the optimal flower color is made reliably. C;D) When $\beta = 50$, sometimes the bee performs well (C), and other times it performs poorly (D).

Indirect actor-experiments

Figure 9.5: Foraging in bumble bees. A) The mean preference of five real bumble bees for blue flowers over 30 trials involving 40 flower visits. There is a rapid switch of flower preference following the interchange of characteristics after trial 15. Here, $\epsilon = 3/10$ and $\beta = 23/8$. B) Concave subjective utility function mapping nectar volume (in μ l) to the subjective utility. The circle shows the average utility of the variable flowers, and the star shows the utility of the constant flowers. C) The preference of a single model bee on the same task as the bumble bees. (Data in A from Real, 1991; B & C adapted from Montague *et al*, 1995.)

Direct actor

▼ maximize expected average reward:

$$r = P[b]rb + P[y]ry$$

Use
$$\frac{\partial}{\partial mb} P[b] = \frac{\partial}{\partial mb} \frac{\exp(\beta mb)}{\exp(\beta mb) + \exp(\beta my)} = \beta P[b] P[y]$$

$$\frac{\partial r}{\partial mb} = \beta P[b]P[y](rb - ry) = \beta P[b]P[y](rb - r^*) - \beta P[y]P[b](ry - r^*)$$
Interpret 2 terms: choice of b/y flowers with P[b], P[y].

- ► Change m_b by $\delta[b] = P[y](rb r^*)$ if b is selected, and $\delta[b] = -P[b](ry r^*)$ if y is selected. For m_y equiv.
- $\mathbf{r}^* = \text{mean reward}$

Direct actor-model

Figure 9.6: The direct actor. The statistics of the delivery of reward are the same as in figure 9.4, and $\epsilon = 0.1$, T = 1.5, and $\beta = 1$. The evolution of the weights and cumulative choices of flower type (with yellow dashed and blue solid) are shown for two sample sessions, one with good performance (A & B) and one with poor performance (C & D).

Ex 4

- ▼ Study indirect and direct actors on a simple two-flower model where reward is given as in fig. 9.4.
- ▼ Why do the models sometimes not converge? What can be done to prevent this?

Sequential action choice

▼ (delayed rewards). Example: maze task

▼ Policy evaluation

$$v(B) = \frac{1}{2}(0+5) = 2.5$$
, $v(C) = \frac{1}{2}(0+2) = 1$, and $v(A) = \frac{1}{2}(v(B) + v(C)) = 1.75$.

Critic: Learning rule

▼ The rat chooses action a at location u and ends up at location u':

$$w(u) \to w(u) + \epsilon \delta$$
 with $\delta = r_a(u) + v(u') - v(u)$.

▼ Result of policy evaluation:

Policy evaluation: Model

Figure 9.8: Policy evaluation. The thin lines show the course of learning of the weights w(A), w(B) and w(C) over trials through the maze in figure 9.7 using a random unbiased policy ($\mathbf{m}(u) = 0$). Here $\epsilon = 0.5$, so learning is fast but noisy. The dashed lines show the correct weight values from equation 9.23. The thick lines are running averages of the weight values.

Actor: Policy Improvement

- Compare to direct actor: use rb-r*, here:
 rb = worth of action = ra(u) + v(u')
 r* = average worth = v(u)
- **▼** So use softmax with $\delta = r_a(u) + v(u') v(u)$

$$m_{a'}(u) \rightarrow m_{a'}(u) + \epsilon \left(\delta_{aa'} - P[a'; u]\right) \delta$$
 (9.25)

for all a', where P[a'; u] is the probability of taking action a' at location u given by the softmax distribution of equation 9.11 or 9.12 with action value $m_{a'}(u)$.

$$\delta = 0 + v(B) - v(A) = 0.75$$
 for a left turn $\delta = 0 + v(C) - v(A) = -0.75$ for a right turn.

Actor: experiments

Figure 9.9: Actor-critic learning. The three curves show P[L; u] for the three starting locations u = A, B, and C in the maze of figure 9.7. These rapidly converge to their optimal values, representing left turns and A and C and a right turn at B. Here, $\epsilon = 0.5$ and $\beta = 1$.

Ex 5

- ▼ Study critic and actor on the simple maze task model which was given in the lecture.
- ▼ Do the models always converge?

Resumé of Chapter 9

- Classical conditioning: fixed rewards
 - Rescorla Wagner Rule
 - Temporal Difference Learning (Analytical Treatment)
 - Linear rules and updates.
- ▼ Instrumental conditioning: animal determined rewards
 - Static Action Choice (indirect/direct actor)
 - Sequential Action Choice (delayed rewards, critic/actor)
 - Stochastic rules and updates. Animals chooses policy.
- ▼ In all cases, rewards / policies are learnt by rules.

