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_ecture 13

Dynamics of Temporal
Difference Learning
—an Analytical Calculation
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Classical Conditioning

¥ Classical: Reinforcers delivered independently
of actions taken by the animal

v Stimulus u

v Expected reward r, R
v Weight w

v Predicted reward v
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Temporal Difference Learning

v Total trial time

¥ Predicting Future Reward R(t) =< Z_lf(t v7)>
(only after stimulus onset!) -

¥ Stimuli u over a range of time are weighted:
(Sutton and Barto 1990)

V(=) w(r)u(t-7)
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Rule derivation (Dayan)

v Error function:
< R(1)-v(t) >2=< Tzf r(t+7)— Zt: w(z)u(t —7) >2

v Stochastic gradient

o< Réii[!ft) > Z (4 7) Z wW(z)u(t—r) > *u(t-a)

v Rule Aw(r) =es(tult—7) | &(t) =< Tzf r(t+7) > —v(t)
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Introducing temporal difference

Tt
v Have §(t)=<> r(t+7)>-v(t) Wwhere
=0 (41

< Tz_f rt+z)>=r(t)+< D r((t+1)+z)>=r(t) +v(t+1)

=0

l.e. prediction is used in formula again.

¥ Hence prediction error s(t) =r(t) + v(t+1) — v(t)
where Av(t)=v(t+1)-v(t) Is called the
temporal difference term.

¥ Allows to predict future rewards.
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Full analytical treatment

¥ \We want to compute, for all trials n and for
any time of trial t, the predicted reward v"(t).

¥ The (single) stimulus u Is given at t_u, the
(extended) reward r(t) Is presented at times
t r,min ... t_r,max.

¥ |.e. we will end up with a formula describing
the following effects of temporal difference
learning:
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Effects of temporal difference learning
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Figure 9.2: Learning to predict a reward. A) The surface plot shows the prediction
errar 8(f) as a function of time within a trial, across trials. In the early trials, the
peak error occurs at the time of the reward (¢ = 200}, while in later trials it occurs al
the time of the stimulus (£ = 100). (B) The rows show the stimulus u(£). the reward
r(f), the prediction v({), the temporal difference between predictions Avif—1) =
v( ) —v(t—1), and the full temporal difference error (¢ — 1)y = ri(t— 1)+ Av(t—1).
The reward is presented over a short interval, and the prediction v sums the total
reward. The left column shows the behavior before training, and the right column
after training. Av(f— 1) and 8(f— 1) are plotted instead of Av(#) and &({#) because
the latter quantities cannot be computed until time £+ 1 when v(f+ 1) is available.

Andreas Wendemuth, Otto-von-Guericke-Universitdt Magdeburg, SS 2006 4



Analytical treatment (1)

v Have for smgle stimulus u(t) =ua(t.t,)
v ()= ZW”+1(T)U(’[ T (e
and Aw(k)_gé(t)u(t K)=eus(k+t,) . Hence
v TRuw (=t ) = uw (t—t,) + UAW" (t—t,) =
V(1) + eu?S" (1) = v (1) + su2|r (t) + V" (t +1) —v" (1)]
¥ This 1s a recursive (in the trials n) relation in
v(t), for all times of trial t. It shows:
v(t)=0 for t<t, and for t >t

r,max
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Analytical (2)

~ If this is to converge, we must have ¢"(t) >0
and hence v""(t)>Vv"(t) . Thisis o0.k.

v §"(t) - 0 leads to v(t+1) = v(t) —r(t), o
as seen in the rule derivation, satisfies v(t) =)_r(t+7)

v However, that is just the required final state and says
nothing about the dynamics and whether it actually
converges to this state. We will therefore analytically
derive the full dynamics now.
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Analytical (3)

v Write vri(t) 21— au®)v" (1) + vVt +1) +r(t)| OF
V(L) 1-su®  au’ Vi (t,) 0
Vn+1(tu+1) l_guz gu2 Vn(tu+1) :
; — + &u r.(tr,min)

5U2

Vn+1(tr,max) l_guz Vn(tr,max) r-(tr,max)
¥ In matrix notation, with component index t:
v™= A*v"+eub  and with v°=0 , one has

N
VN+l: EUZZAn *b
n=0
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Analytical (4)

¥ The sum can be calculated (geometric series,
E Is the unit matrix):

v = guZZN:A“ *h =eu’(E-A)(E-AYN*D
¥ This gin\_/oes the full dynamics! AN*! has to be
calculated, i1t depends on u and ¢.

¥ |.e. we know VvN(t) for any trial N and for any
time of trial t analytically.

Andreas Wendemuth, Otto-von-Guericke-Universitdt Magdeburg, SS 2006 12

e



Convergence

v If AN =50 (which is the case), the sum
converges, and

vi=eUu*(E-A) " (E-A"H*b—2 5 cu’(E-A)"'D
~ Insert A and b: convergence to R(t)=<Y r(t+z)> !
7=0

ve(t,) 1 -1 0 11 « -1 0
ve(t,.,) 1 -1 : 1 1 - 1 :
: = F(t min) | = oo ()
RO : o :
V7 (L ax) 1 Mt max) 1) {1t max)
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Analytical (5)

¥ The result for trial n+1 1s, in full detalil:

V“+1(tu) 1 1 - .. 1
V”*l(tuﬂ) 1 1 --- 1
: _ . . o«
Vn+1(tr,max)
1 1-gu?  su? ” 0
1 1-—gu® gu?® ;
- * r-(tr,min)
. eu’? :
1 1—8U2 r-(tr,max)
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Conclusion

v We have started with a trio:

1. Cost function: vN(t)—(?) R(b),
2. Production (Prediction) rule: Sutton and Barto,
3. Learning (update) rule: temporal difference.

v We have integrated Production and Learning into a
recursive formula v™'=A*v" +au’b

v From this, we have obtained a single (!) closed
formula vN(t,e,u,r(t)), as compared to the former trio

¥ We have shown convergence vN(t,e,u,r(t)) —R(t)
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