Cognitive Neuroscience II

Prof. Dr. Andreas Wendemuth

Lehrstuhl Kognitive Systeme
Institut für Elektronik, Signalverarbeitung und
Kommunikationstechnik

Fakultät für Elektrotechnik und Informationstechnik Otto-von-Guericke Universität Magdeburg

http://iesk.et.uni-magdeburg.de/ko/

Lecture 13

Dynamics of TemporalDifference Learning– an Analytical Calculation

Classical Conditioning

▼ Classical: Reinforcers delivered independently of actions taken by the animal

- **▼** Stimulus u
- ▼ Expected reward r, R
- ▼ Weight w
- ▼ Predicted reward v

Temporal Difference Learning

- **▼** Total trial time T
- ▼ Predicting Future Reward $R(t) = \langle \sum_{\tau=0}^{t-1} r(t+\tau) \rangle$ (only *after* stimulus onset!)
- ▼ Stimuli u over a range of time are weighted: (Sutton and Barto 1990)

$$v(t) = \sum_{\tau=0}^{l} w(\tau)u(t-\tau)$$

Rule derivation (Dayan)

▼ Error function:

$$< R(t) - v(t) >^2 = < \sum_{\tau=0}^{T-t} r(t+\tau) - \sum_{\tau=0}^{t} w(\tau)u(t-\tau) >^2$$

▼ Stochastic gradient

$$\frac{\partial \langle R(t) - v(t) \rangle^{2}}{\partial w(\alpha)} = \langle \sum_{\tau=0}^{T-t} r(t+\tau) - \sum_{\tau=0}^{t} w(\tau)u(t-\tau) \rangle *u(t-\alpha)$$

▼ Rule
$$\Delta \mathbf{w}(\tau) = \varepsilon \delta(t) \mathbf{u}(t-\tau)$$
; $\delta(t) = \langle \sum_{\tau=0}^{T-t} r(t+\tau) \rangle - v(t)$

Introducing temporal difference

- ► Have $\delta(t) = \langle \sum_{\tau=0}^{T-t} r(t+\tau) \rangle v(t)$ where $\langle \sum_{\tau=0}^{T-t} r(t+\tau) \rangle = r(t) + \langle \sum_{\tau=0}^{T-(t+1)} r((t+1) + \tau) \rangle = r(t) + v(t+1)$
 - i.e. prediction is used in formula again.
- ► Hence prediction error $\delta(t) = r(t) + v(t+1) v(t)$ where $\Delta v(t) = v(t+1) - v(t)$ is called the *temporal difference term*.
- ▼ Allows to predict future rewards.

Full analytical treatment

- ▼ We want to compute, for all trials n and for any time of trial t, the predicted reward vⁿ(t).
- ▼ The (single) stimulus u is given at t_u, the (extended) reward r(t) is presented at times t_r,min ... t_r,max.
- ▼ I.e. we will end up with a formula describing the following effects of temporal difference learning:

Effects of temporal difference learning

Figure 9.2: Learning to predict a reward. A) The surface plot shows the prediction error $\delta(t)$ as a function of time within a trial, across trials. In the early trials, the peak error occurs at the time of the reward (t=200), while in later trials it occurs at the time of the stimulus (t=100). (B) The rows show the stimulus u(t), the reward r(t), the prediction v(t), the temporal difference between predictions $\Delta v(t-1) = v(t) - v(t-1)$, and the full temporal difference error $\delta(t-1) = r(t-1) + \Delta v(t-1)$. The reward is presented over a short interval, and the prediction v sums the total reward. The left column shows the behavior before training, and the right column after training. $\Delta v(t-1)$ and $\delta(t-1)$ are plotted instead of $\Delta v(t)$ and $\delta(t)$ because the latter quantities cannot be computed until time t+1 when v(t+1) is available.

Analytical treatment (1)

▼ Have for single stimulus $u(t) = u\partial(t, t_u)$:

$$v^{n+1}(t) = \sum_{\tau=0}^{t} w^{n+1}(\tau)u(t-\tau) \xrightarrow{t>t_u} uw^{n+1}(t-t_u)$$
and
$$\Delta w(k) = \varepsilon \delta(t)u(t-k) = \varepsilon u\delta(k+t_u) \quad \text{Hence}$$

$$v^{n+1}(t) \xrightarrow{t>t_u} uw^{n+1}(t-t_u) = uw^n(t-t_u) + u\Delta w^n(t-t_u) =$$

$$v^n(t) + \varepsilon u^2 \delta^n(t) = v^n(t) + \varepsilon u^2 \Big[r(t) + v^n(t+1) - v^n(t) \Big]$$

This is a recursive (in the trials n) relation in $v^n(t)$, for all times of trial t. It shows: v(t)=0 for t<t_u and for t > t_{r.max}

Analytical (2)

- ▼ If this is to converge, we must have $\delta^n(t) \to 0$ and hence $v^{n+1}(t) \to v^n(t)$. This is o.k.
- ▼ $\delta^n(t) \to 0$ leads to v(t+1) = v(t) r(t), as seen in the rule derivation, satisfies $v(t) = \sum_{\tau=0}^{T-t} r(t+\tau)$
- ▼ However, that is just the required final state and says nothing about the *dynamics* and whether it actually *converges* to this state. We will therefore analytically derive the full dynamics now.

Analytical (3)

$$\begin{array}{c}
\mathbf{Write} \quad v^{n+1}(t) \stackrel{t>t_{u}}{=} (1 - \varepsilon u^{2}) v^{n}(t) + \varepsilon u^{2} \left[v^{n}(t+1) + r(t) \right] \quad \mathbf{Or} \\
\begin{pmatrix} v^{n+1}(t_{u}) \\ v^{n+1}(t_{u+1}) \\ \vdots \\ v^{n+1}(t_{r,\max}) \end{pmatrix} = \begin{pmatrix} 1 - \varepsilon u^{2} & \varepsilon u^{2} \\ 1 - \varepsilon u^{2} & \varepsilon u^{2} \\ & \vdots \\ & \ddots & \ddots \\ & & 1 - \varepsilon u^{2} \end{pmatrix} \begin{pmatrix} v^{n}(t_{u}) \\ v^{n}(t_{u+1}) \\ \vdots \\ v^{n}(t_{r,\max}) \end{pmatrix} + \varepsilon u^{2} \begin{pmatrix} 0 \\ \vdots \\ r(t_{r,\min}) \\ \vdots \\ r(t_{r,\max}) \end{pmatrix}$$

▼ In matrix notation, with component index t:

$$\mathbf{v}^{n+1} = \mathbf{A} * \mathbf{v}^n + \varepsilon u^2 \mathbf{b}$$
 and with $\mathbf{v}^0 = \mathbf{0}$, one has

$$\mathbf{v}^{N+1} = \varepsilon u^2 \sum_{n=0}^{N} \mathbf{A}^n * \mathbf{b}$$

Analytical (4)

The sum can be calculated (geometric series, **E** is the unit matrix):

$$v^{N+1} = \varepsilon u^2 \sum_{n=0}^{N} A^n * b = \varepsilon u^2 (E - A)^{-1} (E - A^{N+1}) * b$$

- ▼ This gives the *full dynamics*! A^{N+1} has to be calculated, it depends on u and ε.
- ▼ I.e. we know $v^N(t)$ for any trial N and for any time of trial t analytically.

Convergence

▼ If $A^{N} \xrightarrow{N \to \infty} 0$ (which is the case), the sum converges, and

$$v^{N} = \varepsilon u^{2} (E - A)^{-1} (E - A^{N-1}) * b \xrightarrow{N \to \infty} \varepsilon u^{2} (E - A)^{-1} b$$

■ Insert **A** and **b**: convergence to $R(t) = \langle \sum_{\tau=0}^{T-t} r(t+\tau) \rangle$:

$$\begin{pmatrix} \mathbf{v}^{\infty}(\mathbf{t}_{\mathbf{u}}) \\ \mathbf{v}^{\infty}(\mathbf{t}_{\mathbf{u}+1}) \\ \vdots \\ \mathbf{v}^{\infty}(\mathbf{t}_{\mathbf{r},\max}) \end{pmatrix} = \begin{pmatrix} 1 & -1 & & & \\ & 1 & -1 & & \\ & & \ddots & \ddots & \\ & & & 1 \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ \vdots \\ \mathbf{r}(\mathbf{t}_{\mathbf{r},\min}) \\ \vdots \\ \mathbf{r}(\mathbf{t}_{\mathbf{r},\max}) \end{pmatrix} = \begin{pmatrix} 1 & 1 & \cdots & \cdots & 1 \\ & 1 & 1 & \cdots & 1 \\ & & \ddots & \ddots & \vdots \\ & & & \ddots & \ddots & \vdots \\ & & & & \ddots & \ddots & \vdots \\ & & & & & \ddots & \ddots & \vdots \\ & & & & & & 1 \end{pmatrix} \begin{pmatrix} 0 \\ \vdots \\ \mathbf{r}(\mathbf{t}_{\mathbf{r},\min}) \\ \vdots \\ \mathbf{r}(\mathbf{t}_{\mathbf{r},\max}) \end{pmatrix}$$

Analytical (5)

▼ The result for trial n+1 is, in full detail:

$$\begin{pmatrix} \mathbf{v}^{n+1}(\mathbf{t}_{u}) \\ \mathbf{v}^{n+1}(\mathbf{t}_{u+1}) \\ \vdots \\ \mathbf{v}^{n+1}(\mathbf{t}_{r,max}) \end{pmatrix} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ & 1 & 1 & \cdots & 1 \\ & & \ddots & \ddots & \vdots \\ & & & \ddots & 1 \\ & & & & 1 \end{pmatrix} *$$

$$\begin{bmatrix} \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & \ddots & \\ & & & 1 \end{pmatrix} - \begin{pmatrix} 1 - \varepsilon u^2 & \varepsilon u^2 & & \\ & & 1 - \varepsilon u^2 & \varepsilon u^2 & \\ & & & \ddots & \ddots & \\ & & & & 1 - \varepsilon u^2 \end{pmatrix}^n \begin{bmatrix} 0 & & \\ \vdots & & & \\ r(t_{r,min}) & & \vdots & \\ r(t_{r,max}) & & \vdots & \\ r(t_{r,max}) & & \ddots & \\ \end{bmatrix} * \begin{pmatrix} 0 & & \\ \vdots & & \\ r(t_{r,max}) & & \vdots & \\ r(t_{r,max}) & & \vdots & \\ \end{pmatrix}$$

Conclusion

- ▼ We have started with a trio:
 - 1. Cost function: $v^{N}(t) \rightarrow (?) R(t)$,
 - 2. Production (Prediction) rule: Sutton and Barto,
 - 3. Learning (update) rule: temporal difference.
- ▼ We have integrated Production and Learning into a recursive formula $\mathbf{v}^{n+1} = \mathbf{A} * \mathbf{v}^n + \varepsilon u^2 \mathbf{b}$
- From this, we have obtained a single (!) closed formula $v^N(t,\varepsilon,u,r(t))$, as compared to the former trio
- We have shown convergence $v^N(t, ε, u, r(t)) \rightarrow R(t)$

