#### Cognitive Neuroscience II

Prof. Dr. Andreas Wendemuth

Lehrstuhl Kognitive Systeme
Institut für Elektronik, Signalverarbeitung und
Kommunikationstechnik

Fakultät für Elektrotechnik und Informationstechnik Otto-von-Guericke Universität Magdeburg

http://iesk.et.uni-magdeburg.de/ko/



#### Lecture 12

- Classical conditioning
  - Rescorla Wagner Rule
  - Temporal Difference Learning



## Classical Conditioning

▼ Classical: Reinforcers delivered independently of actions taken by the animal

- **▼** Stimulus u
- ▼ Expected reward r, R
- ▼ Weight w
- ▼ Predicted reward v



## Rescorla – Wagner rule (1972)

- Minimize square error (stochastic gradient)
   <r ⋅ w \* u>²
- ▼ Rule:  $\Delta \mathbf{w} = \varepsilon \delta \mathbf{u}$  with  $\delta = r v$ . Has form of a delta-rule (same derivation)
- ▼ If steps are small, solution like differential eq.:

$$\tau_{w} \frac{d\mathbf{w}}{dt} = \delta \mathbf{u} = r\mathbf{u} - \mathbf{C} * \mathbf{w} \quad \text{with} \quad \mathbf{C} = \mathbf{u}\mathbf{u}^{T}$$



## Ex 1 (Similar to Cha. 6 / Ex 2):

▼ Show that the differential Rescorla-Wagner rule

$$\tau_{w} \frac{d\mathbf{w}}{dt} = \delta \mathbf{u} = r\mathbf{u} - \mathbf{u}\mathbf{u}^{T} * \mathbf{w}$$
has the solution
$$\mathbf{w}(t) = \mathbf{u}_{\perp} + \mathbf{u} \left[ \frac{\mathbf{r}}{|\mathbf{u}|^{2}} - a \exp(-\frac{|\mathbf{u}|^{2}}{\tau_{w}} t) \right]$$

where the constant scalar a and the constant vector  $\mathbf{u}_{\perp}$  (perpendicular to  $\mathbf{u}$ ) have to be chosen according to boundary conditions.

- **▼** Solve for a and  $\mathbf{u}_{\perp}$ :
  - 1) at t=0, with  $\mathbf{w}(t=0) = \mathbf{0}$ , then evolve for t=0...t<sub>1</sub>, with r=1
  - 2) new *a* for  $t > t_1$ , with r = 0, then evolve
- **▼** Compare with fig.9.1 (following page)



#### Behaviour



Figure 9.1: Acquisition and extinction curves for Pavlovian conditioning and partial reinforcement as predicted by the Rescorla-Wagner model. The filled circles show the time evolution of the weight w over 200 trials. In the first 100 trials, a reward of r=1 was paired with the stimulus, while in trials 100-200 no reward was paired (r=0). Open squares show the evolution of the weights when a reward of r=1 was paired with the stimulus randomly on 50% of the trials. In both cases,  $\epsilon=0.05$ .



#### Other features

- *Blocking*: Second stimulus is blocked by a trained first one (no δ)
- ► Inhibitory conditioning: Second stimulus is presented together with trained first only in absence of reward, inhibits a trained first one  $(0 < w_1 = -w_2)$
- **▼** Overshadowing: Sharing reward between two stimuli  $(0 < w_1 = w_2)$



#### Full list of other features

| Paradigm   | Pre-Train           | Train                       | ı                     | Result                         |                                |
|------------|---------------------|-----------------------------|-----------------------|--------------------------------|--------------------------------|
| Pavlovian  |                     | $s \rightarrow r$           |                       | $s \rightarrow 'r'$            |                                |
| Extinction | $s \rightarrow r$   | $s \rightarrow \cdot$       |                       | $s \rightarrow `\cdot `$       |                                |
| Partial    |                     | $s \rightarrow r$           | $s \rightarrow \cdot$ | $s \rightarrow \alpha' r'$     |                                |
| Blocking   | $s_1 \rightarrow r$ | $s_1 + s_2 \rightarrow r$   |                       | $s_1 \rightarrow 'r'$          | $s_2 \rightarrow \cdot \cdot$  |
| Inhibitory |                     | $s_1+s_2 \rightarrow \cdot$ | $s_1 \rightarrow r$   | $s_1 \rightarrow 'r'$          | $s_2 \rightarrow -\dot{r}$     |
| Overshadow |                     | $s_1+s_2 \rightarrow r$     |                       | $s_1 \rightarrow \alpha_1$ 'r' | $s_2 \rightarrow \alpha_2$ 'r' |
| Secondary  | $s_1 \rightarrow r$ | $s_2 \rightarrow s_1$       |                       | $s_2 \rightarrow 'r'$          |                                |

Table 9.1: Classical conditioning paradigms. The columns indicate the training procedures and results, with some paradigms requiring a pre-training as well as a training period. Both training and pre-training periods consist of a moderate number of training trials. The arrows represent an association between one or two stimuli  $(s, \text{ or } s_1 \text{ and } s_2)$  and either a reward (r) or the absence of a reward (r). In Partial and Inhibitory conditioning, the two types of training trials that are indicated are alternated. In the Result column, the arrows represent an association between a stimulus and the expectation of a reward (r) or no reward (r). The factors of  $\alpha$  denote a partial or weakened expectation, and the minus sign indicates the suppression of an expectation of reward.



#### Ex 2

▼ For the list of features on the previous page, show which (all?) of these can be explained by the Rescorla-Wagner rule with 2 weights.

[Hint: follow the examples which were given]



# Temporal Difference Learning

- **▼** Total trial time T
- ▼ Predicting Future Reward  $R(t) = \langle \sum_{\tau=0}^{T-t} r(t+\tau) \rangle$
- ➤ Stimuli u over a range of time are weighted: (Sutton and Barto 1990)

$$v(t) = \sum_{\tau=0}^{t} w(\tau)u(t-\tau)$$



## Rule derivation (Dayan 1992)

**▼** Error function:

$$< R(t) - v(t) >^2 = < \sum_{\tau=0}^{T-t} r(t+\tau) - \sum_{\tau=0}^{t} w(\tau)u(t-\tau) >^2$$

**▼** Stochastic gradient

$$\frac{\partial \langle R(t) - v(t) \rangle^{2}}{\partial w(\alpha)} = \langle \sum_{\tau=0}^{T-t} r(t+\tau) - \sum_{\tau=0}^{t} w(\tau)u(t-\tau) \rangle *u(t-\alpha)$$

▼ Rule 
$$\Delta \mathbf{w}(\tau) = \varepsilon \delta(t) \mathbf{u}(t-\tau)$$
;  $\delta(t) = \langle \sum_{\tau=0}^{T-t} r(t+\tau) \rangle - v(t)$ 



## Introducing temporal difference

- ► Have  $\delta(t) = \langle \sum_{\tau=0}^{T-t} r(t+\tau) \rangle v(t)$  where  $\langle \sum_{\tau=0}^{T-t} r(t+\tau) \rangle = r(t) + \langle \sum_{\tau=0}^{T-t} r(t+1) + \tau \rangle = r(t) + v(t+1)$ 
  - i.e. prediction is used in formula again.
- ► Hence prediction error  $\delta(t) = r(t) + v(t+1) v(t)$ where  $\Delta v(t) = v(t+1) - v(t)$  is called the *temporal difference term*.
- ▼ Allows to predict future rewards.



## Example(1): u(t=100) = 1, r(t=200)=1

- Need to learn R(t):0 (t<100), 1 (t=100..200), 0 (t>200)
- ▼ First trial:  $\mathbf{w}(t) = 0$ ,  $\mathbf{v}(t) = 0$ . Hence  $\delta(t=200)=1$  and  $\Delta \mathbf{w}(\tau) = \varepsilon \delta(t) \mathbf{u}(t-\tau) = \varepsilon \mathbf{u}(200-\tau) = \varepsilon[\tau=100]$
- So we have the first predictor w(100)= $\varepsilon$  and  $v_1(t) = \sum_{t=0}^{t} w(\tau)u(t-\tau) = \varepsilon u(t-100)$
- ► This  $\overline{predicts}$  only at t=200.



#### Example (2): u(t=100) = 1, r(t=200)=1

$$v_1(t) = \sum_{t=0}^{t} w(\tau)u(t-\tau) = \varepsilon u(t-100)$$

► Second trial:  $\delta(199) = r(199) + v(200) - v(199) =$ 

t=199: 
$$0 + \varepsilon u(100) - \varepsilon u(99) = \varepsilon$$

$$\Delta \mathbf{w}(\tau) = \varepsilon \delta(199) \mathbf{u}(199 - \tau) = \varepsilon^2 \mathbf{u}(199 - \tau) = \varepsilon^2 [\tau = 99]$$

t=200: 
$$\delta(200) = r(200) + v(201) - v(200) =$$

$$1 + \varepsilon u(101) - \varepsilon u(100) = 1 - \varepsilon$$

$$\Delta \mathbf{w}(\tau) = \varepsilon \delta(200) \mathbf{u}(200 - \tau) = \varepsilon (1 - \varepsilon) \mathbf{u}(200 - \tau) = \varepsilon (1 - \varepsilon) [\tau = 100]$$

► Predictor: 
$$v_2(t) = \sum_{\tau=0}^{t} w(\tau)u(t-\tau) = \varepsilon(2-\varepsilon)u(t-100) + \varepsilon^2 u(t-99)$$



#### Example (3): u(t=100) = 1, r(t=200)=1

$$v_2(t) = \sum_{t=0}^{t} w(\tau)u(t-\tau) = \varepsilon(2-\varepsilon)u(t-100) + \varepsilon^2 u(t-99)$$
  
starts predicting 1 step earlier, at t=199

Third trial: t=198: 
$$\delta(198) = r(198) + v(199) - v(198) = \varepsilon^2$$
  
 $\Delta \mathbf{w}(\tau) = \varepsilon \delta(198) \mathbf{u}(198 - \tau) = \varepsilon^3 [\tau = 98]$ 

t=199: 
$$\delta(199) = r(199) + v(200) - v(199) = \varepsilon(2 - \varepsilon) - \varepsilon^2$$
  
 $\Delta \mathbf{w}(\tau) = \varepsilon \delta(199) \mathbf{u}(199 - \tau) = 2\varepsilon^2 (1 - \varepsilon) [\tau = 99]$ 

t=200: 
$$\delta(200) = r(200) + v(201) - v(200) = 1 - \varepsilon(2 - \varepsilon)$$
  

$$\Delta \mathbf{w}(\tau) = \varepsilon \delta(200) \mathbf{u}(200 - \tau) = \varepsilon - \varepsilon^2 (2 - \varepsilon) [\tau = 100]$$



## Temporal difference conclusion

- ▼ With every trial, the prediction starts 1 step *earlier*.
- The prediction *mass* also moves to earlier times. This happens the faster, the larger  $\varepsilon$ .
- ▼ Example: ε =1:  $v_1(t) = u(t-100)$

$$v_2(t) = u(t-100) + u(t-99)$$

$$v_3(t) = u(t-100) + 2u(t-99) + u(t-98)$$



#### Ex 3

- ▼ Study temporal difference learning with a program.
- ► Explain the behaviour of figure 9.2 (next page)



## Effects of temporal difference learning



Figure 9.2: Learning to predict a reward. A) The surface plot shows the prediction error  $\delta(t)$  as a function of time within a trial, across trials. In the early trials, the peak error occurs at the time of the reward (t=200), while in later trials it occurs at the time of the stimulus (t=100). (B) The rows show the stimulus u(t), the reward r(t), the prediction v(t), the temporal difference between predictions  $\Delta v(t-1) = v(t) - v(t-1)$ , and the full temporal difference error  $\delta(t-1) = r(t-1) + \Delta v(t-1)$ . The reward is presented over a short interval, and the prediction v sums the total reward. The left column shows the behavior before training, and the right column after training.  $\Delta v(t-1)$  and  $\delta(t-1)$  are plotted instead of  $\Delta v(t)$  and  $\delta(t)$  because the latter quantities cannot be computed until time t+1 when v(t+1) is available.

# Next lecture: Instrumental Conditioning

▼ Actions of the animal determines which reinforcement is provided

