
Andreas Wendemuth, Otto-von-Guericke-Universität Magdeburg, SS 2005
1

Cognitive Neuroscience II

Prof. Dr. Andreas Wendemuth 

Lehrstuhl Kognitive Systeme
Institut für Elektronik, Signalverarbeitung und 

Kommunikationstechnik  
Fakultät für Elektrotechnik und Informationstechnik  

Otto-von-Guericke Universität Magdeburg

http://iesk.et.uni-magdeburg.de/ko/



Andreas Wendemuth, Otto-von-Guericke-Universität Magdeburg, SS 2005
2

Lecture 10 (Concludes Chapter 8)
u Function approximation
u Stochastic Learning
u Kullback-Leibler-Measure
u Expectation-Maximization (EM)
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Function approximation
u Match function h(s) which is not of the type of 

activation function
u Mathematically, expand h(s) into a set of 

known functions which act as a function basis
u Examples: Taylor expansion, Fourier 

expansion
u We are left with learning weights of the 

functional prototypes
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Network structure
Is
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Learning the weights
u Approximation:
u Cost:

u Hebbian rule: 

or indeed other known types of rules.
u Can be interpreted as input tuning curves f(s) 

for generating a suitable (overcomplete) basis.
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Example for function approx.:
u Learning a sine:
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Ex 8: Function Approximation
u In the above example (learning a sine), what 

happens outside of the displayed range?
u Can neurons learn a periodic function on an 

unlimited time range?
u What is an overcomplete basis? 
u If a neural network does a function 

approximation with an overcomplete basis, 
what happens? Is this harmful?
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Stochastic Learning
u Central to Stochastic Learning is the concept of 

matching probability distributions.
u We consider the input-output relation (to be realized

by a network) as drawn from a distribution P[v|u]. 
u The true network realization, however, depends on 

the actual weights and realizes P[v|u, W].
u Obviously, the task is to choose the weights such that 

P[v|u, W] and P[v|u]  match as best as possible.
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Probabilistic Rules
u Recall from the Boltzmann machine that a 

neuron a is selected at random. Then its state is 
changed stochastically according to: 

u Gibb‘s sampling: The neuron with total input 
activation Ia(u) is active (va=1) with probability
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Markov Chains
u Obviously, the update rule only depends on the 

present state of the input activation. The dynamics 
is memory-less. 

u This defines a Markov Process, the corresponding 
train of states are a Markov Chain. 

u Since neuron selection and update rule are 
stochastic, the dynamics does not converge to a 
fixed point v¶, but to a limit distribution P ¶[v].
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Limit distribution
u The limit distribution for the vector (!) v is 

given by

with the partition function (Z= Zustandsumme)
or 
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Likelihood
u Sample the vector v component-wise, 

independently for each component va. Then the 
probability for a particular output v is given by 
the likelihood

or
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Log-Likelihood
u Is given by

or

or
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...
u Or

u If only recurrent weights,                     and
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Analysis
u Derivative

or

u Watch closely!: At maximum, posterior = prior 
probability.

u Derivative is in v-direction, so with gradient 
descent, weights are updated Hebbian-style.  
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Ex 9 - Likelihood
u In a US election,  60% Republicans and 40% Democrats were

elected.
u If this is known, what is the Log-Likelihood of an election 

result of a city, where 5000 citizens voted Republicans and the 
same number of citizens voted Democrats?

u With this city‘s election result, maximize the likelihood with 
respect to the distribution of votes which now is regarded as 
unknown.  What is the optimal distribution of votes? What is 
the best Likelihood? Why is there a difference to the 
Likelihood we computed above? What is the best possible 
likelihood at all?
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Kullback-Leibler-Statistics, 
Expectation-Maximization (EM)
u See handout
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Matching Distributions?
u After having leart W, conditional distribution

u The Kullback-Leibler distance is
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...
u Or, after selecting examples from P

u This is equivalent to maximizing likelihood.
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Ex 10
u Regard Ex 9 again. In the two situations given, 

now maximize the Kullback-Leibler-Statistics.
u Which results are obtained?
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Learning rule
u Boltzmann machine:

u Or with the generated output:
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Resumé of Chapter 8 (Lectures 6-10)
u Plasticity and Learning / Hebb‘s rule
u Unsupervised Learning: Hebb, Covariance Rule, 

PCA, Oja Rule, Subtractive Normalization:
- Example: Ocular Dominance

u Feature learning, Self-Organizing Maps 
u Supervised Learning:  Perceptron, robust Perceptron

- linear Separability, capacity 
- delta-Rule (Adaline, Adatron)

u Function Approximation, Stochastic Learning, 
Likelihood, Kullback-Leibler-Distance, EM


